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The claim that unitary transformations in quantum mechanics correspond to the canonical trans-
formations of classical mechanics is not correct. Thespectra of operators produced by unitary transforma-
tion of Cartesian coordinate and momentum operators (q, k) are necessarily continuous over the entire
real domain of their eigenvalues. Operators with spectra which are not everywhere continuous are
generated from (g, k) by one-sided unitary transformations U for which UTU = 1 but for which vU'

commutes with either q or k (but not both). If U U' commutes with k, the new coordinates and momenta
(r,s) satisfy commutation relations [s,,,r,] = 27i18,,n, [$m.s.] =0, but [rm,r,] #0; (r,s) are
canonical only for one-dimensional systems. The properties of one-sided unitary transformations are
described; they are characterized by ¢#(K), the eigenvalue of U U'. The one-dimensional case for which
the one-sided unitary transformation is canonical is discussed in detail. A prescription is given for
obtaining the operator canonically conjugate to any one-dimensional observable. Generalization to

higher dimensions is also discussed.

1. INTRODUCTION

It is generally accepted that the quantum-me-
chanical transformations corresponding to the canoni-
cal transformations of classical mechanics are unitary
transformations.! For each canonical transformation
from classical Cartesian coordinate and momentum
variables (Q,K) to generalized coordinates and
momenta (R, S), there should correspond a unitary
transformation from the corresponding quantum
operators (g, k) to (r, s). But it can be shown that the
only operators (r, s) generated from (q, k) by unitary
transformation are those with continuous spectra
whose eigenvectors are normalizable to a delta
function over the entire real domain of the eigenvalues.
Since the quantum operators corresponding to classi-
cal, canonical variables often have discrete spectra
(e.g.,in the case of classical angle and action variables),
an anomaly exists. The spectra of the operators
(r,s) generated by unitary transformation are con-
sidered in Sec. 2.

The transformations of (q, k), which produce
operators (r,s) for which s (or r) has a spectrum
that is not continuous over the entire real domain of
its eigenvalues, are generated by operators U which
are not unitary, but only one-sided unitary. If U'U =
1, then UU" £ 1; but if UUT commutes with k, the
spectrum of s is not everywhere continuous. The
components of r and s satisfy the commutation rules
for canonical operators, except that the components
of r do not commute with each other. Accordingly,
r and s are canonically conjugate only for one-
dimensional systems.

The properties of one-sided unitary transformations

! P. A. M. Dirac, The Principles of Quantum Mechanics (Clarendon
Press, Oxford, 1947), 3rd ed., p. 106.

are described in Sec. 3. If UU' commutes with k, then
these properties are determined by a factor ¢(K), the
eigenvalue of UUT.

In Sec. 4, the important one-dimensional case is
described for which the operators (r, s) produced by
one-sided unitary transformation are canonical. The
case of a discrete spectrum is discussed first. A method
is given for constructing from a discrete basis {|u)}
a basis {|S)} which is defined for every real value of
S. The kets |u) and |S) are both eigenvectors of s.
The method takes into account the presence of
squared delta functions which arise in the case of
discrete spectra. The factor ¢(K)is singular in this case
and it includes the arbitrary constant introduced by
the presence of the squares of delta functions.?3 It is
shown that the eigenvalues S which differ from the
points u of the discrete spectrum of s are not measur-
able. The general one-dimensional case in which the
4 basis has continuous ranges as well as discrete
points is also discussed in Sec. 4. A prescription is
given for obtaining canonically conjugate operators
for one-dimensional systems starting from any given
basis of eigenvectors.

The generalization to higher dimensions is dis-
cussed in Sec. 5. As in the one-dimensional case,
operators whose spectra are not everywhere continuous
are generated only by one-sided unitary transforma-
tions.

2. UNITARY TRANSFORMATIONS

Consider the Hilbert space in which the eigen-
vectors of the coordinate operator q are complete.

2 W. Giittinger, Progr. Theoret. Phys. (Kyoto) 13, 613 (1955).
8 J. R. MacDonald and M. K. Bruchman, Rev. Mod. Phys. 28,
393 (1956).
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The vector q denotes the complete commuting set
of one-dimensional position operators for each degree
of freedom of the system g;, g,, - - * , g,. We write the
eigenvalue equation and completeness condition

11Q) = Q|Q), fdQ Q=1 @D

where Q denotes the set of eigenvalues {Qy, Q,, -,
0;} and Q) is the simultaneous eigenvector of the set
of operators q belonging to the eigenvalue Q. The
Hilbert space is the tensor product of the f one-
dimensional spaces spanned by the eigenvectors of
the components of q.° The vector Q locates a point in
an f-dimensional configuration space. Each com-
ponent @, ranges over the entire real domain. Simi-
larly, the momentum operator p = 27Kk is a complete
commuting set of component operators p;, p,,** -,
Py, for which

k [K) = K [K), f KKK =1 (2.2)

The components of the eigenvalue K = {K;, K;,* - -,
K} range over the entire real domain. {|Q)} and
{|IK)} are orthonormal sets with delta-function

normalization:
Q[Q)=6Q —Q), K'|K)=4K —K).
(2.3)

The commutation relations for canonical operators

hold:
[qm’ qn] = [kma kn] =0,

[km’ qn] = (27"')—-16m,n1' (24)
Accordingly,
Q | K) = exp (27iQ - K), 2.5)
so that |K) is the Fourier transform of |Q):
(2.6)

IK) = f dQ exp (27iQ - K) |Q).

Consider the transformation from q, k to new
operators 1, s generated by the operator U:
r= UlqU, s= UkU. @27

If U is unitary,
UtU = UU' =1,

then r and s are Hermitian, and they are canonical
operators since

(2.8)

[rm’ rﬂ] = [sm’ sn] = 0,

(8, ra) = 2mi)~16,, 1. 2.9

4 See Ref. 1, p. 57.
5 A. Messiah, Quantum Mechanics (John Wiley & Sons, Inc.,

New York, 1961), Vol. 1, p. 307.
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It is generally accepted that unitary transformations
are the quantum-mechanical transformations corre-
sponding to the canonical transformations of classical
mechanics.! But it is easy to show that the operators
r and s produced by unitary transformation of q, k
necessarily have the same spectra as q, k; their eigen-
vectors are orthonormal sets with delta-function
normalization for all values of their eigenvalues in the
real domain. According to (2.1) and (2.7),

rUtQ) = U'q|Q) = QUTIQ),  (2.10)

so that U'|Q) is an eigenket of r belonging to Q.

Define the ket

IR) = UT|Q)q—r- @11

|Q)o=r is the eigenket of q belonging to the eigen-
value Q = R. Then

r[R) = U'q|Q)o-r = RUT|Q)g—r = R[R), (2.12)

so that |R) is the eigenket of r belonging to eigenvalue
R. Similarly,

IS) = U [K)g—s, sIS)=S|S).
From (2.11) and (2.13),
vt = f dR [R)(Qlo—r = f dS [S) (Klgs- (2.14)
The sets {|R)} and {|S)} are complete, since

f dR |R)(R| = U' f dR |Q)g—r (Qlo-r U

(2.13)

= UdeQ IQQI U =1. (2.15)

They are also orthonormal sets with delta-function
normalization, i.e.,

(R’ | R) = (Qlo—r' UU" |Q)o_r

o = (Q |g-r' Q)o-r = R’ — R). (2.16)
Similarly,

f dSIS)(S| =1, (§'|S)=4&S" —8). (217)

From (2.12), (2.13), and the completeness of {|R)}
and {|S)}, we have

r=de [R) R (R|, s=de IS)S (S| (2.18)

The Fourier transform relation (2.5) is invariant to the
unitary transformation,

(R|S) = (Q |g_r K)k=s = exp 2miR - S), (2.19)
so that

IS) = f dRexp 2miR-S)[R).  (2.20)
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Since the operators r and s, resulting from the unitary
transformation (2.7), have continuous spectra over the
entire real domain with delta-function normalization
of their eigenvectors, unitary transformations cannot
generate canonical operators with discrete or non-
continuous spectra. It will be shown that operators
with noncontinuous spectra are generated by one-
sided unitary transformations.

As an example of a unitary transformation to
illustrate the preceding formalism, consider the case

Ul = f dQ f dQ’ exp (27iQ’ - Q) [Q)(Ql, (2.21)
where (2.8) is satisfied. Define

K = UT 1Qlqx = f dQ exp (27iQ - K) |Q).
Then
Ulqu = U*fdQ 1Q)Q QU

=deUT QVg-x K (Qlo-x U

=de|K>K<K| =k
Since

utut =fdQ 1Q)(—Ql, UU =fdQ 1-Q)(Ql,

we have, therefore,

U'kU = U'UqUU = UTUdeQ Q) Q Q| UU

=fdQ 1—Q)Q(—Q| = —q.

This unitary transformation corresponds to the
classical canonical transformation which inter-
changes coordinate and momentum variables.® The
correspondence between infinitesimal unitary trans-
formations for which U =1 + ieF, where ¢ is an
infinitesimal number and F is a Hermitian operator,
and infinitesimal classical canonical transformations
is well known.?

3. ONE-SIDED UNITARY TRANSFORMATION

Consider the operator U for which

Utu =1, UU' # 1.

but 3.1

Let us see under what conditions the canonical
commutation relations (2.9) can be obtained for the

8 H. Goldstein, Classical Mechanics (Addison-Wesley Publ. Co.,
Inc., Reading, Mass., 1950), p. 245.
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Hermitian operators r, s defined by (2.7). From (2.4)
and (3.1),

U'lk,,, g.)U = UUU%,,q,U — U'q.k, UU'U
= (2mi)™6,, 1.

If we require that UU ' commute with k (but not with

9,

[UU*, k] = 0, (3.2)

then [s,,r,] = 2=i)™9,, 1. It also follows from
(3.2) that [s,,s,] = 0. But in general [r,,r,] # 0,
since

Ful = Ulq, UU'q, U (3.3)

and UU' does not commute with q. For a one-dimen-
sional system, the one-sided unitary transformation
satisfying (3.2) is canonical; for higher dimensions, the
components of the new coordinate operator r do not
commute with each other. If UU' commutes with q
(but not with k), it is the components of the new
momentum operator s which do not commute ; mutatis
mutandis, discussion of this case would present nothing
new. Note that if UUT commutes with both q and k,
then UU' = 1; this is the unitary case already con-
sidered. Since it will be shown that the transformations
of (q,k) which generate operators (r,s), where s
(or r) has a noncontinuous spectrum, are one-sided
unitary transformations in which UU' commutes with
k (or q), their properties are now considered.

Define the kets [R) and |S) as in (2.11) and (2.13).
Then, just as in (2.15) and (2.17), the sets are com-
plete, according to (3.1). Also, as in (2.18),

r= U*fdQ)Q>Q<Qn U
= U f dR |Q)g-x R (Qlg.n U
=de IR) R (R,
s = f dS[S)’S (S|. (3.4)

Since UU'T commutes with k, it can be written in
diagonal form as

vut = f dK [K) ¢(K) (K|, $(K) = Tr {UU" [K) (K],
(3.5)

where ¢(K) is the eigenvalue of UU' to which the
ket |K) belongs:

UU' [K) = ¢(K) [K). (3.6)
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Since UU" is Hermitian, ¢(K) is real. If we define

$(S) = [$(K)l~s> (3.7
then
(S 1S) = $(K)x=sU" [K)yms = UT[(K)K)) s
= U'UU" [K)ys = U' [K)ys = |S).  (3.8)

Also [S) is an eigenket of s since, according to (3.2),

s|S) = U'kU - Ut [K)g_s = UTk [K)g—g

=SU' Kixes = SIS). (3.9)

The eigenvectors of the Hermitian operator s are
orthogonal but without delta-function normalization,

since
S']8) = (Kix_s UU" [K)ys = $(S)I(S' — ).
(3.10)

Note that if $(S) = 1 for all S, then UU" = 1. This is
the unitary case with delta-function normalization
excluded in (3.1). On the other hand, the kets {R) are
not eigenkets of the Hermitian operator r, since

rR) = U'qUU" |Q)g-r,

and UU' does not commute with q. The kets |R) are
not orthogonal; instead, according to (2.5),

R'|R) = Qlo—g' UU" |Q)g-r
= f dKHK) (Qlor K) (K | Qor

(3.11)

= f JK$(K) exp [27iK - (R' — R)]
= f dSH(S) exp 2iS - (R' — R)]. (3.12)

Orthogonality is destroyed unless ¢(S) = 1 for all S.
From (3.4) and (3.12), we have

rR) =de' IR) R'R’ | R)

= j dR'R’ [R)) f dS$(S) exp [2miS + (R' — R)],
(3.13)

IR) = f 4R’ [R') (R’ | R)

= f 4R’ [R") J dS¢(S) exp [2miS « (R' — R)].

(3.14)
Since (3.12) can be written as
i 0

R'|R) = ¢{——=}8(R' — R), 3.15

R | R) ¢(2ﬁaR)( INERE)
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it follows that

)R R), [R) = qS(Ziﬂ 5%) IR,
(3.16)

i 0

rIR) = ¢(§§5§

The Fourier transform relations are preserved. Thus,
8)= U K = U7 [4Q10) @ K5
= U'[dQ 1@ ep miQ-5)

=de exp 2miR - S)UT |Q)g_r

= f dR exp 2miR - S) |R). (3.17)
Similarly,
R =st exp(—2miR-S)[S).  (3.18)
But
R|S) = (Qlg=rUU" [K)x-s = ¢(S) exp (2miR :S).
(3.19)

According to (3.9), any function f{(s) can be written
in diagonal form

f(s) = f dS IS) £(S) (S|, (3.20)

Since
R] f(8)18) = fS)(R | S) = $(S)f(S) exp (2miR - S),
according to (3.8) and (3.18), we have

1) = f dR f dS [R) $(S)/(S) exp iR - S) (S|
N (e .
= f R |R) f((Zm) aR) f dS (S| exp 27iR - S)

- f R |R) f((zm)—l é%) (R, (3.21)

Consider the unitary operator exp (2wifd -s) where
8 is a real constant:

exp (2mif - 5) = f dS |S) exp (27 - S) (S|
?
= [ar 1R exp (.p : 5{) ®|

=JdR IR)(R + Bl. (3.22)
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Accordingly, exp (27i - s) is a displacement operator
for the set {|R)}:

exp 2=if - s) IR)
=st IS) exp [—2miS - (R — 8)] = |R — B).

(3.23)
From (3.13), (3.17), and (3.19),

riR) :deqKS) exp (—2miR + S)(2mi)™ é%
x f AR’ exp (2R’ - S) [R")

9
— /! Tr‘ _‘1 i
- f 4SS | R2m) =18,

r= f ds((zwirl é‘ag |s>) S|

- f ds sy 2 (s, (3.24)

27 0S

As shown in (3.3), the components of r do not com-
mute; from (3.24),

Foa = f dS 1S) (5‘; ag )‘“S)(Ei? 5%) Sl (3.25)

so that commutivity occurs for the unitary case,
¢(8) = 1 for all S. For integral m, we can write

Crip -0 =[as1s) (40 f—s—) s,

so that the unitary operator exp (27 - r) becomes

exp (i 1) = f dS |S) exp (~¢(S)rs : 5%) sl
(3.26)

which is not a displacement operator for the set
{IS)}. But consider the class of operators g defined by

g = f dR R) g(R) (R]. (3.27)

If g(R) is real, then g is Hermitian. The operator r
itself is a g operator according to (3.4), but the oper-
ator g should not be confused with g(r). Now

gIS) = f dR |R) g(R)$(S) exp (27iR - S)
= #S)g ((2m'>—1 fg) S),

g= J’dS{g((zm‘rl —a;a-s-) 1) s

- f dS 1S) g(i ——a~) |,

3.28
27 38 (3:28)
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A displacement operator can be obtained as the g
operator:

o'(@) = f dR [R) exp (27 + R) (R|

=de IS) exp (—-@ 58-8-) (8]

= f dS |S)(S — B, (3.29)

V(@) 1S) = f dS'[S)(S" — B S)

- f S’ [S) &S’ — B — S)H(S)
= HS8) IS + B).

In general, »(B) is not unitary unless ¢(S) = 1 for all
S, since

(3.30)

o (@)@ = f dS 1S) $(S — B) (S|,

o(@)'(B) = f dS [S) 4(S + B) Sl (3.31)
Note from (3.23) and (3.30) that
exp 27iP - s)rexp (—2#if - s)
=.~de|1{—- YRR — B =r+BL, (3.32)

wB)so'(B) = [ dS 1S — B) (S)S (S — B

= f dS1S) $(S + BX(S + B)(SI. (3.33)

The properties of the one-sided unitary transforma-
tions satisfying (3.2) are controlled by the ubiquitous
factor ¢(S). If ¢(S) depends on Planck’s constant in
such a way that as 7 — 0, $(S) — 1 for all S, then the
same classical limit would be obtained whether r, s are
generated from q, k by unitary transformation or by
one-sided unitary transformations satisfying (3.2).

4. THE ONE-DIMENSIONAL CASE

In Sec. 2 it was shown that unitary transformation
of the coordinate and momentum operators cannot
generate operators whose spectra are discrete or not
continuous on the entire real domain. For a one-
dimensional system, the one-sided unitary transforma-
tion satisfying (3.2) is canonical, as shown in Sec. 3.
In this section we show that for one-dimensional
systems, operators with discrete spectra or spectra
which are not continuous over the entire real domain
can be generated by such canonical, one-sided,
unitary transformations.
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In the one-dimensional space spanned by the eigen-
vectors of position operator ¢ and momentum oper-
ator p = 2nhk, consider the transformation from the
basis of eigenkets | K) of k to a basis of kets | ) specified
by a parameter u which takes on discrete values on the
real axis (discrete spectrum). The set {|u)} is assumed
complete, and orthonormal with Kronecker-delta
normalization, so that

Eu I;u><”l = 19 </l’ 'Iu> = 6;1',‘4'

Note that the u basis is nondegenerate, since, by
definition, for a one-dimensional system the set
{lw)} must be a complete commuting set.* If, for
example, an eigenvalue were doubly degenerate, two
indices p; and u, would be required to specify a
complete commuting set; the system would be two-
dimensional.
The transformation operator U is specified by

“.n

U IK) = dZ,8(K ~ w) |w (42)
or

Ul =é f dKE,8K — Wl Kl (4.3)

The real constant € will be chosen so that the con-
dition
Ut =1 (4.4)

is satisfied. Thus,

U'U = e f K, 8, 8K — 10K — ') 1) @'

= f dKZ,Z,0, 10K — F 100", (4.5)

since 8(K — w)d(K — p') = 0 if g’ # p. It has been
shown by use of distribution theory®? that

B ~ W = '0(K — ), (4.6)

where ¢ is a finite constant. Choose € = €. Then,

from (4.1),

Uty = o f dKE,8(K — ) 1)l = B, 1) il = 1.

4.7)
On the other hand,

UU' = f dK f dK'S, 8K — p)d(K’ — u) [K') (K]

—c f dK |K)Z,8(K — ) (K| = €2,k — ).
(4.8)

Accordingly, the transformation from the K basis,
where K is a continuous spectrum on the entire real
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axis, to the u basis, where yu is a discrete spectrum of
points on the real axis, is a canonical one-sided unitary
transformation for which UU' commutes with k but
not with g. It is characterized by the factor $(K)
which, according to (3.5) and (4.8), is

$(K) = €Z,0(K — ).
Equations (4.5) and (4.7) are equivalent to

4.9)

; f dKO(K — w)d(K — i)
= b, e f dK[3(K — )P
=0, f AKS(K — p) = 0,0, (4.10)

when p and y' assume discrete values. The validity of
this equation permits interpretation of the undeter-
mined constant e as arising from the indefinite limit of
integration in the following equation:

ed(K — wd(K — )
u’+1}€
=de6(K - ,u)f, _dsd(K = x), (411)

where e lies in the range 0 < fe < |u’' — yl, for
u # p. From (4.11),

c f dKS(K ~ (K — i)
w+ie
= f dKO(K —~ ) f ,, 0K =)
u'—~3e€

u’+£€
=f . dxd(x — p) = 0y,

o~

in agreement with (4.10), where ¢ is restricted by the
smallest separation between points of the discrete
spectrum. In the continuum, ¢ — 0 so that

c f dK(K — wd(K — ')

wde
=f ; dxd(x — p) — d(u’ — u).

n'—ge€
In this limit, for all X,
H(K) = e,8(K — u) ~1, sothat UU"—1;
(4.12)
the transformation becomes unitary.

Using the one-sided unitary operator U defined by
(4.3), define the kets |S) and [R), as in (2.11) and
(2.13):

1$) = UM |K)gs = ¥Z,0(S — p) {u),

[R) = U'|Q)qr = €¥Z, exp (—27ipR) |u). (4.13)
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The sets {|S)} and {|R)} are complete in accordance
with the discussion in Sec. 3. From (3.10) and (3.12),

(S'| 8) = H(S)(S" — S) = €Z, (S — WS — ),
(R'| R) = f dS$(S) exp [27iS(R’ — R)]

= =, exp [2miu(R' — R)]. (4.14)

It may be noted that, in agreement with (4.10),
W= f dR(w | RY(R |
— f dR exp 2miR(u — p)) = 0,,0. (4.15)
The Hermitian operators r and s become
r=de|R)R(R|

= 5,5, f dRR exp [2miR(y’ — )] lu)u'l, (4.16)

s=de 1S) S (S|

=53, f dSSH(S — WS — ') ) |

=3, i) p (ul- (4.17)

The operator s has the discrete spectrum u, but also
has the spectrum S which is defined on the entire real
axis:

sl =Z, Wy p'@W {w=plp, (418

51S) = 2,805 — s |
= 2,605 — wu I

= 5,85 — WS = SIS). (419

For every Hermitian operator s which has an ortho-
normal set of eigenkets |u) belonging to a discrete
spectrum of eigenvalues g, a complete set of eigenkets
|S) can be constructed which is defined for every
eigenvalue S on the real axis. However, the kets |S)
are not normalized to a delta function but are normal-
ized according to (4.14); the norm of |S) vanishes
unless S is one of the discrete points of {u}; only
when #(S) = 1 for all S is the normalization to a
delta function for all S.

The operators r and s in (4.16) and (4.17) are canon-
ically conjugate with [s, r] = (2i)—'1. The kets |R)
and |S) are Fourier transforms in accordance with
(3.17) for the one-dimensional case. From (3.22) and
(3.26) the unitary operator exp (2wifs) is a displace-
ment operator, but exp (2mifr) is not. The displace-
ment operator for the set {|S)} is v'(B), which is
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defined in (3.29); (3.30) becomes
o(B)1S) = $(S)IS + B) = €Z,8(S —w) IS+ B
= 58,08 — WS + B — W) )
= B30, g8 + B — W) lu). (4.20)

The displacement operator v'(8) can also be applied
to a ket |u) of the discrete spectrum:

o'(B) ) = f dSo(8) 1S)(S | 1) = Sy g )
(4.21)

which equals |u + 8) if u + p belongs to the set
{#} and vanishes otherwise.

The question arises whether the eigenvalues of s in
the spectrum S are measurable. The answer is negative
unless S is one of the points in the discrete set . Let
p(s) be a density operator which commutes with s
so that it represents a mixture of eigenstates of s.
Since p(s) is diagonal both in the S representation and
in the u representation,

pls) = f dS |S) p(S) (S| = B, | plw) Gul, (4.22)

where p(S) and p(x) must be nonnegative. Now,
Tr pls) = f dSp(S) Tr |S)(S| = f dSp(S)H(S)

= f dSp(S)Z,5(S — ), (4.23)

Tr p(s) = Z,0(p).
In order to satisfy the normalization condition
Tr p(s) =1
for both (4.23) and (4.24), it is necessary that
p(S) = 2,8(S — wp(u).

The expectation of s in the state specified by p(s) is,
accordingly,

Tr [sp(S)] = f dSp(S) Tr [s [S)(SI]

(4.24)
(4.25)

(4.26)

= f dSSp(S)H(S)

= 2, pup(p). 4.27)

The probability density p(S) vanishes for S # u;
only the eigenvalues u of the discrete spectrum are
measurable in the state p(s) with probability weights
p(p).

If the one-dimensional basis of (4.1), in addition to
the discrete set of kets {|u)}, has a continuous range of
kets {|»)} in the interval & < # < B, then, in place of
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(4.1), the completeness condition becomes

B
S+ [ emoi=1 @®)
with orthogonality conditions

W = Bys 0| =0, | )= 00" — ).
(4.29)

(Several continuous ranges could occur, but we
illustrate the method by allowing only one.) The
transformation operator U is defined, as in (4.2), by

U'IK) = EZ,0(K — p) )
+ f dO(v; 0, BO(K — ) ), (4.30)

where 0(v; «, ) is a step function equal to unity for
a < v < @, vanishing for v < « or » > f8. Again, € is
chosen so that UTU =1, i.e.,

v'u = f dK{e‘leué(K — )W
+ f dvb(v; 2, BO(K — ») |v>}
X {e%z,,,a(K — 1) (]
+ f V0’5 3, BOK — »') <v'|}

=3, |l + f iy a, B0 =1, (431)

when e is specified as in (4.7) so that (4.10) is valid.
But

v =de 1K) {eZué(K —
+ f dv6(v; 2, BS(K — v)} (K|

= 3,00k — p) + f dvb(v; @, YOk — v).  (4.32)

Again, U is a one-sided unitary operator, and UU t
commutes with k.

$(K) = €Z,8(K — ) + 0(K; w, B).  (4.33)

Using the operator U defined by (4.30), define the
kets |S) and |R) as

1S) = U' |K) ks = ¥Z,8(5 — ) |w)
+ f dv6(v; 7, B)S(S — ) ¥,
IR) = U |Q)g-r = €', exp (=2miuR) |u)
¥ f dvi(v; @, B) exp (—2mivR) v), (4.34)
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for every real value of § and R. {|$)} and {|R)} are
complete sets. The operators r, s defined according to
(2.7) are canonical for the one-dimensional case. The
operator s has the set of eigenkets {|u), |»)} of (4.28),
Le.,

slv)y=wl),

s {u) = plu), (4.35)

but also the set {|S)},
518y = S§183), (4.36)

just as in (4.18) and (4.19). If ¢(S) = 1 for all S, then
UUT = 1 so that U is unitary. Equation (4.33) shows
that ¢(S) = 1 when S'is in the range « < S < f of the
continuous spectrum. In the general case of several
continuous ranges, additional terms like 6(K; o, )
would appear in (4.33), one for each continuous
range. U is unitary when the continuous range extends
over the entire real domain.

From the discussion of this section a general
prescription can be given for obtaining canonically
conjugate operators for one-dimensional systems. If,
for any quantum observable, the solution of its eigen-
value problem yields the set of orthonormal eigen-
vectors {|u), |#)}, or if a basis of such vectors is
given as in (4.28) and (4.29), construct the set {|S)}
according to (4.34). The set {|R)} can be obtained
by Fourier inversion according to (3.18). The canonical
operators r and s are then defined by

r=JdR|R>R(Rl, s=J‘dS|S>S<S|.

The properties of these operators are determined by
¢(S) as in (4.33).

5. GENERALIZATION TO HIGHER DIMENSIONS

The number of dimensions of a system is the number
of operators required to constitute a complete com-
muting set. The concept of a complete commuting set
of observables has been discussed by Dirac.! To each
set of eigenvalues {Q,, 0,, * * -, @;} = Q of the com-
plete commuting set {g,,gs,* * * , ¢;} = q corresponds
one and only one eigenvector |Qy, @y, *, Q0 =
|Q). The dimensionality of the system is f. In (2.1) and
(2.2) the vectors Q and K locate points in an f-
dimensional configuration space and an f~dimensional
momentum space, respectively; the pair (Q,K)
specifies a point in the 2f-dimensional phase space.
The transformations (2.7) when U is unitary do not
affect the dimensionality of the space. The operators
r and s have f components, and for each value of R
and S the eigenvectors |R) = |Ry, R, ", R;) and
IS) = |81, S,, -+, Sy are simultaneous eigenvectors
for the f components of r and s, respectively. But the
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spectra of r and s when U is unitary are continuous
with delta-function normalization on the entire real
domain of R and S. Noncontinuous (discrete) spectra
of s (or r) require U to be one-sided unitary, with
U'U =1 and UU' commuting with k (or q). In this
case the f components of s are a complete commuting
set of observables, with simultaneous eigenvectors
[S) (not, however, normalized to a delta function for
all S), but the f components of r = U'qU do not
commute with each other and [R) = UT|Q) is not
their eigenvector.

The generalization to higher dimensions of the
discussion in Sec. 4 of the one-dimensional case with
noncontinuous spectrum is straightforward, though
notationally involved. Consider an jf-dimensional
basis vector |M,, My, -+ -, M,). Each parameter M,
may assume discrete or continuous values. For
simplicity allow only one continuous range for each
M;. Then, with the notation M, = u, when g, is
discrete and M, = v, when »; is in the continuous
range «, < v; < f;, there are f2 kinds of kets | M, - - -,
M), since each M, can be a yu, or a »,. Take the case
S =2; the four kets are |uy, ua), lt1, 73), 91, fha),
|¥,, v5). These kets are complete and orthonormal:

2B, s po) (U 5 phol
+3,, f dvy fie, v9) pt, %l
+ zyzfdvl [v1s pad (w1, ol
+fdv1fdv2 s ), mal = 1, (5.1)
<Iu’{ > /"é l M1, :u2> = 6#1'.#15M2'J‘2 ’
vy, vy [ Vi, V) = 0(vy — )0(vy — w,),

<.u£ ) ’Vé ] 1) ’V2> = 6;11'.[116(1}; - 1’2),
<'V{, ‘Ué ‘ vl’ /"2) = 6(1}{ - vl)éﬂg',.uz .

(5.2)

Scalar products of all other combinations vanish.
For the case f=2, construct the ket |S;, S,
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defined for all real values of S, S, as
ISy, S = €X, Z,,0(Sy — p)0(Sy — ps) It > 2

+ 3, f dvs0(ve; g, o)
X 0(S; — pu1)0(Sy — o) lus, va)
+é%,, f dnb(vy; 0y, )
X O(Sy — »)0(Sy — v2) |7, o)
+fdv1fdv26(v1; oy, f0(vs; g, Bs)
X 0(S; — #)O(Se — ¥y) vy, ). (5.3)

The analogous ket |S;, - -+, §;) would have /2 terms on
the right-hand side. The transformation operator U
is given by

IS0, -, 8 = I8) = U' [K)g_s. (3.4)

This is the generalization of (4.34). Again e is chosen
according to (4.7) and (4.10) so that

v'u =fds IS)(S) = 1. (5.5)
But UU' is an operator which commutes with k. The
important point is that U is a one-sided unitary oper-
ator of the type considered in Sec. 3. Only if the basis
[M;, M,, -, M) is continuous with delta-function
normalization over the whole real domain of {M,,
M,, -+, My} is U unitary. The Hermitian operators
r, s defined by (2.7) satisfy the commutation relations
on their components:

(s mal = @) 70,1, (530, 5,] = 0;

but, in general, [r,,, r,] # 0 for m % n. The kets |S)
in (5.4) are simultaneous eigenkets for the f compo-
nents of s, as are the kets |M,, M,, - -+, M,). When
the M basis is not continuous, {|M,, -, M)} is a
set of eigenvectors for an observable s, but that ob-
servable cannot be generated by unitary transforma-
tion of coordinate and momentum operators.
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Angle and action operators (w, /) for the simple harmonic osciliator are treated as resulting from a
canonical transformation of coordinate and momentum operators (g, k) generated by a one-sided

unitary operator U such that U'U =1 and UU" commutes with & but not with g. From the discrete
spectrum of the number operator n, eigenvectors |7) are constructed for every real value of 7; the set
{Im} is complete and orthogonal. Another complete set {|W)} is.obtained, consisting of the Fourier

transforms of the kets in the set {}#)}. The angle operator is w = UTqU = j dW W) W{W|.Theset {| W)}
is not orthogonal; | W) is not an eigenvector of w. If v is defined as f dW |W)exp (—2xiW)(W|, then
the creation and destruction operators are given by a = vnt, a = nt' vis a one-sided unitary operator

such that oo = 1, but ofo = 1 — (0) (0], where |0) is the ground state of the oscillator; v and vl are
similar to the operators £_ and E, of Carruthers and Nieto. The Weyl transforms of w and
/ = 2mh(n + 31) are the classical angle and action variables of the oscillator. The Weyl transform is formu-
lated in terms of the coherent states of the oscillator. A time operator canonical to the Hamiltonian is
defined as t = 2aw/w (w/2m = frequency). The observables for the oscillator are also given in the
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Heisenberg picture and their classical limits are considered.

1. INTRODUCTION

In the preceding paper,' it is shown that quantum
observables, with spectra which are not continuous
over the entire real domain, are generated by
one-sided unitary transformation of the Cartesian co-
ordinate or momentum operators. For one-dimen-
sional systems such transformations are canonical.
In this paper, the formalism is applied to the case of
the simple harmonic oscillator. In addition to
providing an example of the formalism, the problem
of the oscillator is of interest in itself. Susskind and
Glogower? have shown that the expression for the
destruction operator a, as given by Dirac,?® in terms
of the Hermitian angle operator w and number
operator #, in the form

a=vn5‘

(L.1)
(1.2)

cannot be correct. It can be shown that » in (1.1)
annihilates the ground state of the oscillator so that

(1.3)

where |0) represents the ground state, in contradiction
to the unitarity of v in (1.2). A review of angle variables
in quantum mechanics by Carruthers and Nieto has
recently appeared? in which problems associated with

with
v = exp (—2miw),

©|v'v]0) =0,

1 B, Leaf, J. Math. Phys. 10, 1971 (1969).

2 I Susskind and J. Glogower, Physics 1, 49 (1964).

3 P, A. M. Dirac, Proc. Roy. Soc. (London), Ser. A, 114, 243
(1927).

4 P, Carruthers and M. M. Nieto, Rev. Mod. Phys. 40, 411 (1968).

the oscillator are considered. Susskind and Glogower
deny the existence of an angle operator for the
oscillator. Carruthers and Nieto develop properties
of operators C and S which are Hermitian analogs of
the classical functions cos ¢ and sin ¢ of the angle
variable.

Basically, the difficulties of the oscillator problem
stem from the discreteness of the spectrum of the
Hamiltonian and number operators. Because of this
discreteness, the operator U which generates the
canonical transformation to the Hermitian angle and
number operators (w,n) from the coordinate and
momentum operators (g, k) according to

w=UlqU, n=U%U (1.4

is a one-sided unitary operator such that UU' com-
mutes with & but not with ¢.! The operator w is
Hermitian and can be written in diagonal form in
the complete set of kets {|W)}:
w =de W) W (WL, (1.5)
However, |W) is not an eigenket of w. The set {|W)}
is not orthogonal. Properties of » and w and their
spectra are considered in Sec. 2.
In Sec. 3, the displacement operator for the spectra
of w and n are considered. In particular, the lowering
operator for the spectrum of » is

0 =de \W) exp (—2miW) (W) (1.6)

If |N) is an eigenket of the discrete spectrum of n,
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then it is shown that

oIINy=IN+1); viNy=|N—1) for N>O0,
|0y =0. (1.7)

But v is not unitary. Since

ol =1, but o= |NYN|, (1.8)
N=1

v and v’ are similar to the operators E_ and E,,

respectively, given in Sec. 5 of the Carruthers and

Nieto paper.® In fact, from (3.16) shown below, it

follows that the choices

C=3v+1), S= %(u —d), (1.9

satisfy the commutation relation

[C,n] =i, [S,n]=—iC, (1.10)

from which the properties of the operators C and §
are developed.

The expression for v in (1.6) rather than that in
(1.2) is correct. It is shown in Sec. 4 that with v given
by (1.6), the creation and destruction operators
(@', a) are

a=omt, o =nbt (1.11)

The relationship of the operators of the oscillator
to the classical dynamical variables is examined in
Sec. 5. The Weyl transforms® of the operators j =
2nwh(n + }) and w are the classical action and angle
variables, respectively. A formulation of the Weyl
transform in terms of the coherent states of the
oscillator® is also given in Sec. 5.

In Sec. 6, a time operator for the oscillator is
defined as ¢ = 27w/w, where w/27 is the frequency.
It is the operator canonically conjugate to the Hamil-
tonian. Expressions in the Heisenberg picture are
given for w and . The Weyl transform of the Heisen-
berg time operator is the same as the physical time
measured by the increase in phase of the oscillator.
It is an internal property of the oscillator.”

2. NUMBER AND PHASE (ACTION AND ANGLE)
OPERATORS

The Hamiltonian for a simple harmonic oscillator,
with coordinate g and momentum p = 2nkk, is

H = p%[2m 4+ imwiq?, 2.1

5 B. Leaf, J. Math. Phys. 9, 65 and 769 (1968).

¢ R. S. Glauber, “Photon Statistics,” in Fundamental Problems in
Statistical Mechanics, E. G. D. Cohen, Ed. (John Wiley & Sons, Inc.,
New York, 1968), p. 155.

7 Y. Aharanov and D. Bohm, Phys. Rev. 122, 1649 (1961).
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m = mass, w/2m = frequency. It can also be written

H = ho(n + 1) = jo/27, 2.2)
where n is the number operator and j is the action
operator. The angle or phase operator w canonically
conjugate to j and 2=/in must satisfy the commutation
relation

[w,jl =ikl or [w,n] =il27. 2.3)
The eigenvalue problem for n,
n|N)= N|N), 2.4

has a solution with a discrete spectrum,

INY = (b/mt2VN 1)} J dQh(bQ) exp (—3b°0%) |Q),
(2.5)

for integral N =0, 1,2, - - - . The kets |Q) are eigen-
vectors of the position operator g; b = (mw/h)?
is a constant with dimensions (length)=, and A, is
the Hermite polynomial of order N. The N-basis is
complete and orthonormal with Kronecker-delta
normalization:

IyINN[=1, (N'|N)=8y.y. (26)
Construct the ket
1) = ¥Zd(n — N) IN) 2.7
for every real number #. Then
nin) = Zyd(n — NN IN) = 71n),  (2.8)

so that |7) is an eigenket of n belonging to the eigen-
value 7. The constant e is determined by the require-
ment that the set {[%)} be complete:

f dn ) ()
= f_:dﬂfzwzw'é(n — N)3(n — N') NN’ (2.9)

But € can be chosen so that!

€d(n — N)d(n — N') = edy. y 16(n — N)I*

= dya0(n — N).  (2.10)

Accordingly,

f_ ) dn |n){n| = L. Q.11

On the other hand, the set {|5)} is not normalized to
a delta function, since
(' | m) = eZyd(n' — N)o(y — N)

= d(n' — n)eXpd(n — N). (2.12)
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The norm of |%) vanishes unless % is a point in the

discrete set {0, 1,2, - - -}. The ket |7} is obtained by

one-sided unitary transformation of |K), the eigenket

of momentum operator k = p[2=fi. The transforma-

tion operator U is defined by

) = U K)oy
U K) = €X38(K — N) [N),

(2.13)

Ut = f T AKE K — N) NV, (2.14)

so that
v'u=1, vt =f°°d1< K} 248K — N) (K|
- (2.15)
UU' commutes with &, so that
UUT |K) = $(K) |K). (2.16)

Accordingly, |K) is an eigenket of the Hermitian
operator UU" belonging to the eigenvalue

H(K) = eZyd(K — N). (2.17)
From (2.12),
) = f_ ) dn'd(n’ — n)eZyd(n — N)In)
= eXyo(n — N) In) = () In). (2.18)

The ket |W) is defined, for all values of the real
number W, as

Wy = U" Qg (2.19)
According to (2.13), (2.16), and (2.17),

(W[ ) = Qloaw UUT [K) gy = $0)Q |gop K)x—sy
= Zy8(n — N) exp 2niWy), (2.20)

since (Q l K) = exp 2miQK). From (2.18), [W) is
the Fourier transform of [7):

W) = f dn Iy | W = j dn ) () exp (—2miWy)

- f dn ) exp (—~2miWn). (2.21)

In the discrete N-representation, the ket | W) becomes

(W) = Sy |N) exp (—2miNW).  (2.22)
It is periodic with period one in W. The set {{W} is
complete; from (2.10),

fwdwwvan

.y f AWELE 5 exp RaiW(N’ — N)] [N) (V|

=Xy NN = 1. (2.23)
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On the other hand, {|W)} is not orthogonal, and
(W'| W) = Sy exp RuiN(W' — W)). (2.24)

The angle operator w is diagonal in {| W)}. It is defined
as

w =J.delW)W(W]. (1.59)

From (2.8) and (2.13), we have
n =f_idn 1) m ol
= U f_idn K)oy 0 (Klgy U = U'kU, (2.25)
and similarly from (1.5") and (2.19),
w=U' f:dW 1Q) oo W (Qlo-w U = U'qU. (2.26)

Since UU' commutes with k, according to (2.15) we
have
[w,n) = UlqUUkU — UkUUqU
= U'lq, KIU = i1/27.

Accordingly, (2.3) is satisfied; w and n are canonically
conjugate as defined. They are also Hermitian
operators. From (2.8), |7) is an eigenket of n; {|n)}
is an orthogonal set in (2.12). But from (2.24), {| W)}
is not an orthogonal set; [¥) is not an eigenket of w.
From (2.24),

(2.27)

W = f " AW \W'y €Sy exp RaiN(W — W),
- (2.28)

w W) =f AW'W' |W')y €Sy exp RaiN(W' — W)).
(2.29)
3. DISPLACEMENT OPERATORS

Any function f(n) can be written in diagonal form.
From (2.8),

F@) ) = f(m) ), (.1

so that

fn) = f dn \n) £ o, (3.2)

Since
(WL f(n)Im) = f(n)eXnd(n — N) exp QmiWn)
- f[(2m')“ %,}W |7,
we find

) = f aw |W>f[(2m>-‘ %V] Wl (33)
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In particular, if § is a real constant, then the unitary
operator exp (27iffn) is a displacement operator for
{I{W)}. Thus,

exp (27ifin) =fdn In) exp (27ifn) (|
a
—fdw W) exp (ﬂ a—V—V) W]

=JdW W)W + Bl. (3.4)
From (2.18) and (2.20), we have
exp (2ifn) |W)

= f dy exp 2if) ) n | W)

= f dy In) exp [—2mig(W — B)] = [W — B). (3.5)

Therefore,

exp (27ifn)w exp (—2mifin)
= [awew —pyw w — g

=de W) (W + B) (W = w+ BL. (3.6)

On the other hand, a function of w is not, in general,
diagonal in the set {|{W)} even though, according to
(1.5"), w is itself diagonal. This is a consequence of
the nonorthogonality of {| W)}. But a class of diagonal
operators can be defined by [dW|W)g(W) (W],
where g(W) is any function of W. Since

f AW W) g(WYW | )
= f AW |W) g(W)eSxd( — N) exp (2miWn)

€200 — N)g[(zm)‘ n} I,
we find, from (2.18),

de|W>g(W><W| fdn{ [(27”)- }In)}@l

fdn ) g[a— ai} M. 3.7

In particular, a displacement operator for {|7)} can be
defined by

o'(8) = f AW [W) exp 2mifW) (W)

=fdn ) exp (—ﬁ 'a%) (l

= f dy In)(n — B, 3.8)
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o'(B) In) = f df 1’y 8’ — B — m)eZyd(n — N)
=eXyd(n — N)In + B
= 53,80 — N)O( + f — N IN')
= e XyZy Oy nig0(n + f — N)IN).

If v(B) is applied to one of the kets in the discrete set
{IN)}, then

o'(8) Ny = f ' (B) I (0 | N) = Ey-bywag IN,
(3.10)

which equals [N + f) if N + 8 is a member of the
discrete set of points {0,1,2,---} and vanishes
otherwise. Thus,

0'(8) = SyZy Oy yap IN') (NI,

The only nonvanishing cases occur for = +1.
Accordingly, define the raising operator (f = 1)

3.9

3.11)

ot =de W) exp (2miW) (W]

f dn In) exp (377 ) il f dnlnyn — 11 (3.12)

and the lowering operator (f = —1)

. =de| WY exp (—2miW) (W]

fdnlmexp( )(nl fdn!n—lxm. (1.6)

According to (3.11),

o' = 2B Oy a1 IN (NI,
= ZyZy0n, no1 IN)(N|. (3.13)
Since

t

o' = Z5, NN =1, oo =2 INN], (1.8)

we have that v is not unitary, but one-sided unitary.
From (3.10),

VINY=IN+1), o[Ny=|N—1 for N>0,

v|N = 0) = 0. (1.7

v'np = SB_ [N + 1Y N (N + 1
= 231 IN)(N — 1){N| = n — Z%_, IN){N|,
(3.14)
ono' =32, IN — )N (N — 1]

o IN)(N+ DN =n+1, (3.15)

[n,0] = —v, [n,0']=1" (3.16)
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4. CREATION AND DESTRUCTION OPERATORS
From (2.1) and (2.2), the operator », written as
n = }[p*/mhw + moglh — 1],

can be factored into
n=dlua,

4.1)

where creation operator a' and destruction operator a
are the Hermitian adjoint operators:

a' =2 —ip/bh + bq)
-3 2
=2 fdQ|Q>( b aQ+bQ) (l,
a = 2Xip/bh + bq)
= 2"%fdQ 1) (b‘li + bQ) Q. @2

oQ
From these expressions it is readily verified that
[a,d'] =1, (4.3)
[n,a] = —a, [n,a']l=ad" (4.4)

These properties of a, a' are consistent with the
identification
a=uvnt, o =nhl (4.5)
From (3.15),
ad't =t =n+1 (4.6)
and, from (1.8"),

ala=nblont =S INNNN=n (419
N=1

Subtracting (4.1") from (4.6) gives back (4.3). Also,
(4.4) is a consequence of the identification (4.5), since
(3.16) gives

[n, a] = [n, vnt] = [n, vln? = —ont = —a,

[n, a'] = [n, n¥o'] = nd[n, o] = nbv’ = 4'.

From (1.6’) and (3.13),
a =f dn g — 1yt G

= SIN -1 N,
Noo
o' =f dnn + 1) (n + D} )

= f IN + DN + DY)

N=0
Accordingly, we find that
a|lNy=Nt|N—1), a'|N)=(N+ DN+ 1),
(4.8)

the expressions from which a' and @ obtain their
designations as creation and destruction operators.®

4.7

8 A. Messiah, Quantum Mechanics (John Wiley & Sons, Inc.,
New York, and North-Holland Publ. Co., Amsterdam, 1961), Chap.
XII.
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The operator j in (2.2) can be written as

J =2mh(n + }1) = 27k - }(aa' + a'a). (4.9)

5. WEYL TRANSFORMS AND COHERENT
STATES

A convenient way to examine the classical limit
of quantum operators is to obtain their Weyl trans-
forms.> The Weyl transform of an operator A is defined
for a one-dimensional system as

A(Q, K) = Tr [AA(Q, K)]. (5.H)
The inverse transform is
A= f dg f dKAQ, K)A(Q, K). (5.2)

The operator A(Q, K), defined as

AQ, K) = f du f dvexp {2milu(q — Q) + v(k — K)]},

(5.3)
can also be written as

A@Q, K) = f dv |Q + $0)(Q — 30l exp (2mivK)

= f du 1K + 3u)K — ul exp (—27iuQ).
(5.4)
The Weyl transform of any operator f(g), a function
of g alone, is f(Q); the transform of f(k), where
k = p[2nh, is f(K). Accordingly, the transforms of
many of the operators of the simple harmonic
oscillator can be written down by inspection. From
(2.1) and (2.2),
H(Q, K) = P2m + tmo?Q* = E (5.5
(P = 2whK), so that H(Q, K) is the energy of the
oscillator E. Also,
J(@, K) = 2mE[w = 27h[n(Q, K) + 3] = J, (5.6)

where j(Q, K), the Weyl transform of j, is the classical
action variable J. From (4.2), the Weyl transforms
of the creation and destruction operators are

al(Q, K) = 24 [—iP[bk + bQ] = o*,

a(Q, K) = 27}[iP/bh + bQ] = «. 5.7
Accordingly,
a*o = 3(PYbh% + b2Q?)
= Elwh = n(Q, K) + } = J[2=h. (5.8)

In polar form,
o = (a*a)? exp (—2mig) = (J/2wh)} exp (—2mid),
5.9
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where
—P[bh
cos 2nep = } > 2nd = [ 7. (5.10)
(J|wh) (J[mh)
Equation (5.10) is equivalent to
Q = (Jjmrmm)t cos 27,
P = —(Jma|m)? sin 27, (5.11)

which are the equations for the classical canonical
transformation from coordinate and momentum
variables (@, P) to angle and action variable (/, ¢).

Thus, ¢ is the classical angle or phase variable

canonically conjugate to J.

In fact, ¢ is the Weyl transform of the operator w
canonically conjugate to j. In order to show this, start
with the Weyl transform of the commutation relation
(2.3). If the Weyl transform of wis w(Q, K), then it
must satisfy the condition®

fdQ’de'é(Q’ — Q)(K’ — K)2i
X sin {(477)—1(1—9- _ 2 _a_)}
oK 0@’
x w(Q, K)j(Q',K') = ih.  (5.12)
Only derivatives of odd order contribute to this
expression; from (5.6),

UOK) _ 5 oo, UQK) _ g o K
oQ oK b®
so that (5.12) becomes the Poisson bracket relation:
W(@K), j(QK)]p 5.
_Am'hK ow(Q, K) _ moQ owQ, K)

1.

mo o0 fi 0K
(5.13)
The solution of this equation is readily verified to be
27w(Q, K) = —tan™?! 2niK[imwQ), (5.14)

so that, according to (5.10), with P = 2mhK,
w(Q, K) = ¢. (5.15)

The inverse Weyl transformation (5.2) gives the angle
operator as

w=—m*[do f dK tan~ QmhK/mo0)AQK).
(5.16)

The operator A(QK) given in (5.3) can be rewritten
in terms of a', a in (4.2) and their Weyl transforms in
(5.7).
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Since
g=(a+ a")/\y2b, k= (a~ a"b2mi/2,
Q = (a0 + a¥)[\/2b, K= (a — a*)b[2mi\/2,
(5.17)
therefore

A(e*, o) = f du f dv

x exp (2mil(u/by2)a + a' — & — a¥)
+ (vbj2miy2)(a — a' — o« + a®)]}.

With change in variables (2mu/b\/2, vb/\/2) — (—u, v),
this becomes

A(e*, 2) = n‘lfdufdu exp [(v — iu)a — o)
— (v + iu)a = a%)] (5.18)
Write § = v + iu, and use the notation

B = dRe f)d(Im B) = dvdu.  (5.19)

Then
A@ﬁﬂ=fiﬁ%ﬂﬂﬁm—@—ﬂf—fﬂ

= ot f f *BD'(B) exp (Ba* — B*a)
| f f LBD(B) exp (B*o ~ o). (5.20)

The operator D(f) is defined as

D(B) = exp (Ba’ — B*a). (5.21)
D(B) is a unitary operator for which®
D'(B)aD(B) = a + B,

D'(B)a'D(B) = a' + p*. (5.22)

For every complex number « there is an eigenvector
|} of the destructor operator a ,

alo) = ola), (5.23)
the coherent states.*$ They are complete,
= j d |y (o) = 1, (5.24)

but not orthogonal,
By =exp (B*a — 31612 — } lal®). (5.25)
From (5.22) and (5.23),
D'(Balxy = (a + B)D'(B) la) = aD'(B) |),

so that
aD'(B) |a) = (x — B)DI(B) ).

? See Ref. 6, p. 158.
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Therefore, D'(B) o) is an eigenvector of a belonging
to & — f. Consistency with (5.25) requires

D'(B) o) = exp [§(F*« — fa*)l | — f),

D(B) o) = exp [3(Ba* — p*a)] |2 + B). (5.26)
In particular, for « = 0,
D(B)10) = |8), (5.27)

which 1s a well-known result.®
Now, from (5.20), the effect of A(a*, o) upon a
coherent state |y) is

Ade*, @) y)

- ﬂ—lffdzﬁ exp [3%(o — }y) — Blo* — 3y |y + B).
(5.28)

From (5.25),

8] Aa®, ) ly) = 7 f &6
x exp [=}IB* + p¥( — y) — fla* — )0 | )
= 28] ) exp [—2(a* — 0@ — )] (5.29)

This result also follows directly from the expression
for A(x*o) obtained from (5.20):

A*a) = 77 f f 8 exp [~} 1A7]
x exp [—fla’ — a®)]exp [*(a — a)].
(5.30)

6. TIME OPERATOR FOR THE SIMPLE
HARMONIC OSCILLATOR

From (2.2) and (2.3), a time operator 7, canonically
conjugate to the Hamiltonian, can be defined as

t = 2nwlw, (6.1)
so that the canonical commutation relation holds, i.e.,
(¢, H] = inl. (6.2)

The operator ¢ is diagonal in the angle representation:

¢ =de (W) 2nW/w) (W. (6.3)

Let
T = 2aW/w. 6.4)

Then
¢ =de(w/2w) Wy T (W] =de \TY T (T}, (6.5)

where

|T) = (wf2m)* |W). (6.6)

LEAF
The set of vectors {|7)} is complete according to (2.23),

f AT |TY(T| = 1, (6.7)

but not orthogonal according to (2.24),
(T'| T) = e(wf2m)Zy exp [iNo(T' — T)]. (6.8)

The kets of the set {|7)} are not eigenvectors of the
Hermitian operator 7. The time operator is an internal
property” of the oscillator determined by its phase.
According to (5.15), the Weyl transform of ¢ is

10, K) = Caf/oyw(Q, K) = 2nd/w.

To this point the operators and their kets have
been expressed in the Schrédinger picture. Operators
H, j, n all commute with the Hamiltonian and remain
the same in the Heisenberg picture. In order to obtain
the Heisenberg angle and time operators, we use (3.6).
In terms of the parameter (¢ number) T, the physical
time, the Heisenberg angle operator w(T) is

(6.9)

w(T) = exp (iTH[h)w exp (—iTH/h)
= exp (ioTnw exp (—iwTn)

=w+ 1Tw27, wO)=w.  (6.10)

If the Schrodinger operator w is diagonal in the
kets {|W;)}, then

W) =[am Wk, 6.1
where
W= W, + To[2m. (6.12)
Similarly, the Weyl transform of (6.10) is
(T) = ¢ + Tw[2m. (6.13)

From (6.12) and (6.13) we see that the parameter W
is identical with the phase angle, the Weyl transform
of w(T),

W=o¢(T), W,=é. (6.14)
Similarly, the Heisenberg time operator is
KT) =1+ T1 (6.15)
~ f T, 1Ty (T + T) (T (6.16)
The Weyl transform of #(T) is
HT, Q,K)=H0K)+ T, (6.17)
with
HQ, K) = Ty. (6.18)

T is the time elapsed from the initial moment Tj,.
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The Heisenberg equation for the time derivative of
(T)is

d;(_TT) = (iIH7(T), H) = (iH~'[, H} = 1. (6.19)

Despite the appearance in (6.15), the Heisenberg
operator #(T) has no explicit dependence on T the
Schrodinger operator ¢ is independent of T, and

1(T) = exp (iTH/h)t exp (—iTH|[K). (6.20)

In the Heisenberg picture, according to (6.10), (4.5),
and (3.12),

a'(T) = exp (iTH/h)n%
xde |W) exp (2miW) (W] exp (—iTH/K)

= n*J'dW W — oT/2m)

X exp QmiW) (W — wT/[27],
so that
a'(T) = a'(0) exp (iwT),

a(T) = a(0) exp (—iwT). (6.21)
Therefore, from (4.2),
P(T) = p(0) cos (wT) — mewg(0) sin wT,
q(T) = ¢(0) cos (wT) + (mw)p(0) sin wt, (6.22)

in agreement with the classical limit,*8

da(T) _ pT)  dptt) _
dr m dT

For any one-dimensional system whose Hamilto-
nian is time independent, the canonically conjugate
time operator can be obtained as follows: Solve the
eigenvalue problem for the Hamiltonian and con-
struct its spectrum of eigenvectors defined for every
real value of the eigenvalue E. Then

—mw’q(T). (6.23)

H= f dE |E)E (E| (6.24)
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and

d
= | dE |E) ih — (E|. 6.25
tf E) i = (E| (6.25)

In the Heisenberg picture,

H(T) =-exp (iTH/A)t exp (—iTH/h)

iET AW —IiTE
=de exp (T) |EY (lh B_E) (E| exp ( p )

=de IE) (iha—aé) (E| +f.'E \E) T (E|

=t4+ T1,

in agreement with (6.15). Classically a canonical
transformation is possible!® for a system whose
Hamiltonian is independent of time T, from the
coordinate and momentum variables (Q, P) to the
canonical variables (S, R) where

S=H, R=Ry+T. (6.26)

The Poisson bracket condition for canonicity is
satisfied since

d
1l = :171 = [R9 H]P.B. = [RO, H]P'B' )

(6.27)
These equations correspond precisely to (6.15) and
(6.19). The classical canonical transformation is
generated by Hamilton’s characteristic function. The
quantum-mechanical transformation is generated by
an operator U:

H=U%U, t=UlU. (6.28)

Just as in the similar transformation (2.25) and (2.26),
which generates n and w for the simple harmonic
oscillator, the operator U in (6.28) is a one-sided
unitary operator since the spectrum of H is restricted
to nonnegative values, continuous or discrete.

10 H. Goldstein, Classical Mechanics (Addison-Wesley Publ. Co.,
Inc., Reading, Mass., 1950), p. 280.



JOURNAL OF MATHEMATICAL PHYSICS VOLUME 10, NUMBER 11

Bounds for Effective Electrical, Thermal, and Magnetic
Properties of Heterogeneous Materials

MELVIN N. MILLER
P.O. Box 134, Chalfont, Pennsylvania

(Received 1 October 1968)

Determining the effective dielectric constant is typical of a broad class of problems that includes
effective magnetic permeability, electrical and thermal conductivity, and diffusion. Bounds for these
effective properties for statistically isotropic and homogeneous materials have been developed in terms
of statistical information, i.c., one-point and three-point correlation functions, from variational prin-
ciples. Aside from the one-point correlation function, i.e., the volume fraction, this statistical informa-
tion is difficult or impossible to obtain for real materials. For a broad class of heterogeneous materials
(which we shall call cell materials) the functions of the three-point correlation function that appear in
the bounds of effective dielectric constant are simply a number for each phase. Furthermore, this number
has a range of values % to 5 and a simple geometric significance. The number % implies a spherical shape,
the number % a cell of platelike shape, and all other cell shapes, no matter how irregular, have a corre-
sponding number between. Each value of this number determines a new set of bounds which are sub-
stantially narrower and always within the best bounds in terms of volume fraction alone (i.e., Hashin~
Shtrikman bounds). For dilute suspensions the new bounds are so narrow in most cases as to be
essentially an exact solution. There is a substantial improvement over previous bounds for a finite
suspension and yet greater improvement for multiphase material where the geometric characteristics of
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each phase are known.

1. INTRODUCTION

From the continuum point of view, the property of
a material is often described by a linear isotropic
constitutive relation, e.g., Hooke’s law in elasticity,
D = ¢E in dielectrics, Fourier’s law in heat conduc-
tion, Fick’s law in diffusion. In practice many
materials are heterogeneous on a macroscopic scale,
and it is common to replace the material property
specified for a homogeneous material by an effective
or over-all property. This effective property, in a
sense, replaces the heterogencous material by a
hypothetical homogeneous material and is a useful
concept for a broad class of problems of interest. We
shall be concerned with determining what must be
known about the heterogeneous material in order to
determine its effective property.

Complete knowledge of the functional P[E(x),
Elm(x)]a where P[Ez(x)! €lm(x)] dEl(x) e dE3(X) X
de;(x) -+ - degs(x) is defined as the probability of the
realization of the particular joint field [E(x), €,,,(x)],
is required to determine the effective property of the
material. Fortunately, bounds can be obtained for the
effective property in terms of the volume fraction
which is the simplest statistical information one can
obtain for a material. In order to obtain better bounds,
additional statistical information about the material
is necessary. This additional statistical information
may be introduced through the n-point correlation
function, and bounds have been derived in terms of
these functions.

Since virtually nothing is known about the higher-
order correlation functions of heterogeneous material,

this result has had limited utility. Hence, the problem
is to determine how to extend the utility of the above
result without having detailed knowledge of the
higher-order correlation functions which are, in
general, difficult or impossible to obtain.

Beran! derived bounds for the effective dielectric
constant from a classical variational principle which
included additional statistical information, viz., the
three-point correlation function.

The development of improved bounds on effective
properties depends on a knowledge of the three-point
correlation function of the material. Several attempts
have been made to approximate the form of the three-
point correlation function with little success.

For a broad class of two-phase heterogeneous
materials (which we shall call cell materials) we shall
show that this problem is obviated, because the
functions of the three-point correlation function that
appear in the effective dielectric constant bounds® are
simply a number for each phase. Furthermore, this
number has a range of values 4 to } and a simple
geometric significance. The number § implies a cell
of spherical shape, the number } a cell of platelike
shape, and all other cell shapes, no matter how
irregular, have a corresponding number between.

Also, each value of this number determines a new
set of bounds which is substantially narrower and
always within the Hashin-Shtrikman bounds?® (the
best bounds in terms of volume fraction).

The new bounds for dilute suspensions are in most

1 M. Beran, Nuovo Cimento 38, 771 (1965).
2 Z. Hashin and S. Shtrikman, J. Appl. Phys. 33, 3125 (1962).
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cases S0 narrow as to be essentially an exact solution.
For other mixtures, we shall find new bounds which
give substantial improvement in the knowledge of
effective property bounds for two-phase media
where the geometrical characteristics of each phase
are known. Further, the above results can be obtained
for all statistically isotropic and homogeneous dilute
suspension independent of the assumption of a cell
material.

The concepts developed here are applicable to
multiphase media.

2. EFFECTIVE PERMITTIVITY BOUNDS
A. Introduction

In Beran,! by use of a perturbation expansion of the
electric field E and the electrical displacement D as
trial functions in two standard variational principles,
the following bounds on the effective permittivity e*
were found:

* 1'% el ,
e L{ley —-—/{1 + —= 2.1
SO ( <e'2>) @b
and
NN ST
{\e/ (3\e )4<e>2/ ( A )] ’
(2.2)
where
1 oo e TiSi
T 167 © f v f 71 0ry0s, (€O ne(s) r3s® dr ds,
2.3)
2 P /Eme(s) (S)\”z
/= 16 @ f V‘ar3as3\ «(0) /s 3 dr ds.

(2.4)

€ is the fluctuating part of the permittivity and the
bracket denotes an ensemble average, which is
assumed to be equal to the spatial average for a
statistically homogeneous medium. The above results
are subject to the conditions of a medium that is
statistically homogeneous and isotropic with a con-
stant electric field.

From the above equations we see that the bounds
on the effective permittivity are known in terms of
certain averages of the ¢ field and functions of the
three-point correlation functions (¢’(0)e'(r)e’(s)) and
(€'(r)€’(s)/€(0)). This same procedure can be used to
express the bounds in terms of higher-order correla-
tion functions. Beran' shows that the bounds in terms
of the n-point correlation function will be at least
as good as those in terms of the (n — 1)-point corre-
lation function with the expectation that, as n — oo,
the upper and lower bounds will converge.
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The same procedure is valid for determining
effective properties for processes treating heat con-
ductivity, electrical conductivity, magnetic permeabil-
ity, and all other processes which obey the same type
of equations.

The usefulness of the above-mentioned approach
depends on the determination of I and J and similar
derivatives and integrals of higher-order correlation
functions. In subsequent sections we shall define a
broad class of materials for which these functions
are particularly simple and have obvious physical
significance.

B. Determination of n-Point Correlation Functions
for N-Phase Random Media

The n-point correlation function y, is defined as
Va = (e(rp)e(ry) -+ - (r,))

= f e(r)e(rs) et dFy . (0, Ty, - 1), (2.5)
where F;..., is the n-point distribution function.

For a special class of random media, which we
shall call an N-phase random medium, composed of
N phases D,, D,, - Dy of uniform density and of
volume fractions ¢y, ¢, -, @y, respectively, a
property function e(r) may be defined for each phase
as
if reD,,

i=1,2,---,N. (2.6)

The n-point correlation function y,(r,, - -+, r,) for
this process is related to the probability that » points
r,,'*-,r,, thrown at random into the medium, all
lie in the same phase D,. This is a generalization of
the famous Buffon needle game (Kendall and Moran3),
This analogy can be extended to the N-phase material
by considering the n-point correlation function as
the sum of the probabilities of the n points falling in
all possible combinations of D, (i=1, -+, N).
Each term of the sum is multiplied by a weighting
factor which is the product of the property function
of the phase in which the points lie.

For brevity and clarity we shall restrict ourselves
to the two-phase material, as all the arguments
developed for it apply equally to the N-phase material.
For the two-phase random medium the #-point
correlation function is

e(r) =¢;

VulF1sFa,t 00, )
2 2
= z Tt Z Pal-..an(rly T, rn)e(rl) e G(r,,), (2'7)
ap=1 ay=1

® M. G. Kendall and P. A. P. Moran, Geometrical Probability
(Charles Griffin, London, 1963).
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where P; ... ;; is the probability of » points being
in phase Dy, P, ... ;, is the probability of n — 1
points being in phase D, and point r, being in phase
Dy, -+ ,and Py ... ,, is the probability of # points in
phase D,.

If we consider each domain of our two-phase
random medium to be composed of cells, where a
cell is defined as being a mathematically closed
surface containing a portion of the random medium
of uniform property €, we can write the n-point
correlation function in an alternate manner. Instead
of summing terms which are the probabilities of »
points being in different combinations of the phase
D, (i =1,2), multiplied by appropriate weighting
factors, we shall sum over terms which are the proba-
bilities of » points being in different combinations
of cells, multiplied by weighting factors which are the
products of the e(r)’s in whose cells the points lie. If
we account for all possible combinations, the #-point
correlation function becomes

Yalry,  + 7, r,) = € x (probability of »n points being
in the same cell with property ¢) + €/ 'e; X
(probability of n — 1 points being in the same
cell with property ¢, and 1 point being in a
different cell with property €,) + €7 X (proba-
bility of n — 1 points being in the same cell with
property €; and 1 point being in a different cell
with property €) + €/~%¢ x (probability of
n — 2 points being in the same cell with property
¢, and 2 points being in another cell with property
€) + -+ + €7 X (probability of n points being
in the same cell of property e,). 2.8)

For n = 1 Eq. (2.8) becomes

71(r) = €, x (probability of 1 point being in a cell of
property €,) + €, X (probability of 1 point being
in a cell of property €,). (2.9)

If we define ¢ as the volume fraction of material
with property ¢, Eq. (2.9) becomes

() = €@ + (1 — @) = (e). (2.10)

For n =2, Eq. (2.8) becomes

ValTy, 1) = e fi(r, 1) + e3/2(ry, 1o) + €1Z44(xy, 13)
+ €6,[Z15(r,15) + Zo(ryr2)] + €3Z55(ry, T3),
.11
where £, (r;, 1) is the probability of two points (ry, r)

being in the same cell of property e,, Z,,(r1, r2) is
the probability of one point (r;) being in a cell of
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property €, and the other point (r,) being in a different
cell of property e,,.

This method of writing the z-point correlation
function can be extended to all » and the apparent
complexity will vanish when we consider a slightly
restricted class of materials in subsequent sections.
We shall make particular use of the three-point
correlation function expressed in this manner.

We are going to consider a broad class of hetero-
geneous materials called asymmetric cell materials,
but for convenience we shall first consider a restricted
class called symmetric cell materials.

C. Symmetric Cell Material

Consider a space to be subdivided by a large
number of closed surfaces; these closed regions shall
be called cells. The subdivision of the space is arbitrary
except for fulfilling the following requirements:

(1) Space is completely covered by cells;

(2) cells are distributed in a manner such that the
materijal is statistically homogeneous and isotropic;

(3) the material property € of a cell is statistically
independent of the material property of any other cell;

(4) the conditional probabilities of # points being
and m points not being in the same cell of a particular
material, given that one point is in a cell of that
material, are the same for each material.

An example of such a material is the Poisson cell
material (see Gilbert* and Frisch®). This material is
constructed mathematically by distributing a pattern
of points in space so that there is an equal probability
of finding any point in an infinitesimal volume and
the probability that a point is in an infinitesimal
volume is proportional to the volume. Now each
point is assigned the property €, or €, with probability
@ or 1 — ¢ by an independent random process and
the space between the points has the same property
as the nearest point, The space is thus divided into
convex polyhedron-shaped cells.

An infinite family of symmetric cell materials may
be obtained by replacing the initial Poisson pattern
of points by any other pattern with arbitrary correla-
tion between points and following the same construc-
tion.

A second example of a symmetric cell material is a
modification of the above model proposed by
Johnson and Mehl.® They generalized the Poisson
model by considering the distributed points to be nuclei

4 E. N. Gilbert, Ann. Math. Statistics 33, 958 (1962).
5 H. L. Frisch, Trans. Soc. Rheol. 9, 293 (1965).
8 W. A. Johnson and R, F. Mehl, Trans. AIME 135, 416 (1939).
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from which a constant rate of cell growth begins at
different times. Frisch® points out that, in two
dimensions, one can visualize this model in terms of
circular waves spreading from raindrops that fall at
random into a puddle. The cells formed in this model
no longer have plane or convex sides; instead they
are star-shaped.

A third example of a symmetric cell material is a
space packed with spheres of varying diameter. We
assume then that if we allow spheres of all diameters,
the space can be completely filled. The material
property of each spherical cell is determined by an
independent random process, where volume fraction
@ of the cells have property €, and 1 — ¢ of the cells
have property e,. Such a material fulfills the four
requirements of a symmetric cell material and (for
small concentrations) will be useful as a model for
spherical inclusions in a matrix. We can generalize
this model to include distributions of any shape or
combination of shape cells which completely fill the
space (e.g., ellipsoids, cubes, and tetrahedrons).

In general, any subdivision of the space is admissible
which fulfills the first two requirements mentioned
and for which the property of each cell is determined
by an independent random process where P(¢;) = ¢
and P(e;) =1 — ¢. Therefore, the geometry of
individual cells can be extremely different in a sym-
metric cell material. We call a material which satisfies
the four requirements listed above a symmetric cell
material.

For a symmetric cell material we show in Appendix
A, using the approach discussed in Sec. 2.2, that the
three-point correlation functions that appear in Egs.
(2.3) and (2.4) are
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yoy = (LOLO
YN @) /

=L % [2¢— D« —DgO,r,5)

€ (1— ‘P)
+ (“ - (P(“ - 1))f(l', S)], (213)

where o = €/e; > 1, g(0,r,s) is the conditional
probability of a triangle (coordinates 0, r, s) having
all three vertices in a single cell given one vertex in the
cell, and f(r, s) is the conditional probability of a line
segment (coordinates r, s) having both ends in a single
cell given one end in the cell.

Substituting Eqs. (2.12) and (2.13) into (2.3) and
(2.4), respectively, we obtain

/3
e dl=20), (2.14)
<e> (1~ gy
and
D P 00— e —
= - o (e — D@ —1)G
+ [« — g(e — DJF], (2.15)
where
2°2(0, 1, 8) r;s;
~ 16n° J. f 0r30s, rﬁssd rds, (216)

and for f(r,s)

16177 \j;/ f

From Eq. (2.16) we can see that G is a number which
depends only on the geometry of the cells.

=f(Ir — s|) we can integrate F to

o (r, 8) 1i8s i

Orgds; r's®

(2.17)

ds = 3.

¢ (1 — 2¢) Substituting Egs. (2.14) and (2.15)into (2.1) and (2.2),
vor = (€O We(s)) = Y4 - ) gO.rs), (2.12) respectively, we obtain the following bounds for e*:
¢ [+ e@=1D] ple — 1)1 — ¢)

1S 3 - (2.18)

p (e12) x 3[1 + @ — DI + ¢ — 1) + 3(a — 1)(1 — 2¢)G]

an
2o — 1D¥1 —
> %/[a_(p(a_]) $oe — 1)°'(1 — o } (2.19)
(€1€3) 14+ a+3Q2¢ — 1) —1G

Therefore the upper and lower bounds on €* for must obey the more restrictive condition

the symmetric cell material depend on o« and a single 11fe) < e* < (&) (2.20)

number G which is characteristic of the average cell
geometry.

For finite values of ¢; and ¢, we know that ¢*
must be positive and finite. Brown? proved that *

" W. F. Brown, Magnetostatic Principles in Ferromagnetism
(North-Holland Publ. Co., Amsterdam, 1962).

if the permittivity e is considered a random function.
Mathematically, we may express the former require-
ment as “the upper bound on €* must be positive and
the lower bound on e* finite for all values of ¢ and «.”
In Appendix E we show that these restrictions on e*
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lead to the following bounds on G:

<6< 3 @21
We conclude that any value of G outside this range
does not refer to a real cell geometry.

Furthermore, we find that when we substitute the
value G = § into the bounding equations (2.18) and
(2.19), the two equations become asymptotic for small
concentrations (i.e., ¢ approaches zero or unity). In
Appendix F we show that this asymptotic solution is
exactly the small concentration solution of spheres
in a matrix. Similarly, putting G = } into the bounding
equations (2.18) and (2.19), the two equations are
again asymptotic for small concentration; for this
case the asymptotic solution is exactly the small
concentration solution of randomly oriented plates
in a matrix (see Appendix F). We therefore assign
the geometric significance of a sphere to a & of § and
a plate to a G of 4.

Hashin and Shtrikman? have shown that the best
bounds on €* for a two-phase statistically homo-
geneous and isotropic material, when only ¢ is
specified, are

(e ’“[ <p+a(3—<p)] 222

and
*
BN _1_[1
(5152)é of
These bounds are the exact solution for a space
filled with composite spheres where the upper bound
represents a low-permittivity core enclosed in a
high-permittivity shell and the lower bound represents
the reverse situation. When the volume fraction of ¢,
is small, the lower bound is the case of a high-permit-
tivity sphere in a low-permittivity matrix. For this
case Eq. (2.23) reduces to Eqs. (2.18) and (2.19) with
G = 1, which confirms our conclusion that G = §
represents a spherical cell shape. Similarly, when the
volume fraction of €, approaches unity, the Hashin-
Shtrikman upper bound is the case of a low-permit-
tivity sphere in a high-permittivity matrix. For this
case Eq. (2.21) is equal to Eq. (2.18) and (2.19) with
G = §, reconfirming that G = § represents spherical
cell shapes. When the volume fraction of the material
with property e, is small (i.e., ¢ approaches zero),
Eq. (2.21) reduces to Egs. (2.18) and (2.19) with G =
4. Similarly, when ¢ approaches unity, Eq. (2.23)
reduces to Egs. (2.18) and (2.19) with G = 4.
In Appendix F we show that at small concentrations
the new bounding equations are not restricted to

3g(a — 1)
34+ —=g@)a—1)

]. (2.23)
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symmetric cell materials, but hold for all two-phase
statistically isotropic and homogeneous materials.

For ¢ = } both bound equations [viz., Egs. (2.18)
and (2.19)] are independent of G, hence independent
of the cell’s geometry. The symmetric cell model for
@ = 4 becomes a symmetric random medium which
is defined as a random medium satisfying

5 Ty)

n=1,2,---,

Po.y(rys oo or) =P (ry,

for

For a symmetric random medium it can be shown
that odd-order correlation functions may be expressed
in terms of lower-order correlation functions (see
Frisch®); specifically, for the three-point correlation
function, we have

ya(ry, Iy, ty)

= §{ya(ry, r2) + po(ry, 1a) + ya(ry, 1) — 3] (2.24)

This equality for symmetric random media was used ;
the results were tabulated by Beran and Molyneux®
as a solution for Eqgs. (2.1) and (2.2). These results are
equivalent to the result obtained by solving Eqgs. (2.18)
and (2.19) for ¢ = 4.

In Fig. 1, we plot Eqs. (2.18) and (2.19) for « =10,

8 M. Beran and J. Molyneux, Quart. Appl. Math. 24, 107 (1966).
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=1, G =}, and the Hashin-Shtrikman bounds.
We note that the new bounds offer a substantial
improvement in the knowledge of ¢* for all values of
@. By “improvement” we mean the reduction in width
of the new bounds as compared to the Hashin-
Shtrikman bounds. There is an improvement of
509 for ¢ =4 and greater improvement at other
values of ¢. For the small-concentration case the
uncertainty in €* is virtually eliminated. The extreme
values of bounds for G = § and G = { represent the
extreme bounds for all symmetric cell materials. For
all other values of G the upper- and lower-bound
curves fall inside these curves except at ¢ = §, where
all upper-bound curves have the same €* and all lower-
bound curves have the same ¢*. With the informa-
tion that we have a symmetric cell material, we have
an improvement over the Hashin—Shtrikman bounds.
The maximum improvement occurs at ¢ = %; there
is a lesser improvement at other ¢’s.

In Fig. 1 we see that the bounds on ¢* are narrower
for spheres (G = §) than they are for plate (G = )
for all values of ¢ except, of course, ¢ = 4, where
all values of G have the same bounds. This is due to
the fact that there is a single degree of freedom (i.e.,
the location of the sphere center) associated with
G = § as compared to the more than two degrees of
freedom (i.e., plate center and the rotation of the
plate) associated with a G = 4. Consequently, the
greater geometric-configuration uncertainty leads to
a greater uncertainty in the effective-material property.
We are unable to give a physical argument as to why
this geometric uncertainty has no effect for ¢ = 1§,
although we have shown mathematically that the
bounds are independent of cell shape for ¢ =

10.0
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FiG. 2. Bounds on effective permittivity, o = 100, symmetrlc
cell material, , Hashin-Shtrikman; ~~-, G=1%; — - —,
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[see Egs. (2.18) and (2.19)]. The contrast in bound
spread is more dramatically shown in Fig. 2, where
the bounds are plotted for « = 100 and there is better
than a 20 9, improvement for ¢ = 0.5 and better than
a 609, improvement for ¢ = 0.9 for a G of 4.

For other values of G the bounds always fall
within the extreme bounds of G = } and G = }. At
small concentrations the bounds for G =4 and
G = } are narrower than they are for any other value
of G. The physical reason for this is that a G of } or
+ refers specifically to a single-cell geometry, while
other G values refer to many-cell geometries. In
essence, this adds another degree of freedom and a
corresponding increase in uncertainty of the effective
property. In Appendix F we confirm this by showing
that the bounding equations become asymptotic at
small concentrations only for G equal to + and }.

D. Asymmetric Cell Material

In this section we shall investigate a class of mate-
rials for which the geometry of the cells of the two
materials is dissimilar. Consider the space to be sub-
divided by a large number of closed surfaces, and the
enclosed regions shall be called cells. The subdivision
of the space is arbitrary except for fulfilling the
following requirements:

(1) Space is completely covered by cells;

(2) cells are distributed in a manner such that the
material is statistically homogeneous and isotropic;

(3) the material property € of a cell is statistically
independent of the material property of any other
cell.

We call such a material an asymmetric cell material,
and a model of such a material may be obtained by
the following construction: Distribute a pattern of
black and white points by the Poisson process dis-
cussed in Sec. 2.3, where there are gp black points and
(1 — @)p white points per unit volume and p is the
total density of points. The black points will be seeds
from which spherical cells grow, and the white points
are seeds from which aspherical cells grow. When cell
surfaces from two different seeds touch, growth at
that point ceases; this process continues until the
entire space is filled. We may consider this model, a
generalization of the Poisson cell material, to be one
example of an asymmetric cell material. An infinite
family of asymmetric cell materials may be obtained
by replacing the initial Poisson pattern of points by
any other pattern with arbitrary correlation between
points and following the same construction. This
model can be further generalized by varying the
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arrival time of points; this is similar to the Johnson—
Mehl model extension mentioned in Sec. 2.3. Since
the color of the seed from which the cells grow are
a priori statistically independent, therefore require-
ment (3) is satisfied.

Another example of an asymmetric cell material is
a space packed with spheres and cubes of varying size.
We assume that if we allow all sizes, the space can be
completely filled for all volume fractions of spheres
and cubes and that the packing can be carried out
without preference as to whether a cube or sphere is
being inserted at any given location. This model can
be generalized to include many combinations of shape
cells. Again requirement (3) is satisfied by the a priori
random determination of cell shape at each location.

The basic difficulty in considering asymmetric, as
opposed to symmetric, cell materials is in our ability
to determine whether or not the material property is
correlated to the cell’s geometry. It will not always
be possible to tell by observation whether such a
correlation exists because contiguous cells may have
the same property; therefore the boundary and the
cell shape will not be determined by observation.

Using the approach discussed in Sec. 2.2 for the
asymmetric cell material, we derive in Appendix A
the following three-point correlation functions:

var = (€(0)'(r)e'(s))
= 513[‘1’81(0, T, S) -

3

¢
(1— ¢

20, r, s):l (2.25)

and

/€@ (s)\

TN
=& o= D9
+U—@&mn®
(o1 =0 + =Dl g
h 2.26
t e, (2.26)

where g,(0,r,s) is the conditional probability of a
triangle (0, r, s) having all three vertices in a single
cell of material ¢,, given that one vertex is in the cell,
and f71(r, s) is the probability of a line segment (r, s)
having both ends in a single cell of material prop-
erty e,.

Substituting Eqgs. (2.25) and (2.26) into (2.3) and
(2.4), we obtain

ﬁ%G ufwﬁq

(2.27)
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and
612

=i ?)

e+ gl — oc))((

[m—anrwl—w%o

®) P

(1—¢9F9}

(2.28)

F, +

where we define

Gn__:_]_zf agn(Ors)rded
167 vt Ory0s; s

F o= 1 f afﬂ(rs)rs‘;dd
’1

167° Oryds; r’s

(2.29)

(2.30)

By integration of Eq. (2.30), we find that F;, = ¢/3
and F, = (1 — ¢)/3. Following the same argument
outlined in Sec. 2.3, we conclude that G, and G, are
numbers that depend only on the geometries of the
average cell of material property €, and e, respec-
tively.

By use of Egs. (2.27) and (2.28), we may recast (2.1)
and (2.2) as

*

P <1+ e D

(e1€2)*
_ 1ol = @) — 1)° }
14 (« ~ D{g + 3[(1 — ¢)’G, — ¢°G,l}
(2.31)
and
¥ 3
@ﬂﬁZaﬂm ¢l — D]
B 31— a)’(1 — @)y }
I+ a+ 3(a — DG, — (1 — ¢)*Gy)f
(2.32)

If G, and G, are equal, Egs. (2.31) and (2.32) reduce
to the symmetric cell material bounding equation,
as is to be expected. In general, we see that the
bounding equations now depend on a pair of numbers
G, and G, which characterize the cell geometry of the
two materials.

Using the same physical criteria as we did for the
symmetric cell material, we can bound G, and G, so
that

<G, L4, (2.33)

:pl»-

3G <35 (2.34)

For all possible values of «, @, G, and G,, the
bounding equations are inside the Hashin—Shtrikman
bounds. The bounding Eqs. (2.31) and (2.32) attain
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their highest upper bound and lowest lower bound for
the combinations G, = },G, = yand G, = ,G; = §,
respectively. Hence, these combinations constitute
absolute bounds for asymmetric cell materials; since
the Hashin—-Shtrikman bounds refer to a real physical
geometry and fall outside these bounds, an explana-
tion is necessary. The apparent discrepancy is due to
the fact that the specific geometry to which the
Hashin-Shtrikman bounds refer is concentric spheres,
which are part of a class of materials which violate our
assumption that the material property of a cell be
statistically independent of the material property of
any other cell.

For ¢ approaching zero the new bounding equa-
tions converge to the Hashin-Shtrikman upper bound
when G, =1 and to the Hashin-Shtrikman lower
bound when G, = {. When ¢ approaches unity, the
same convergence occurs with G, = 4 and G, = §,
respectively. In Appendix F we show that the new
bounding equations are not restricted to asymmetric
cell materials, but hold for all two-phase statistically
homogeneous and isotropic materials.

In Figs. 3 and 4 we plot the new bounds for the
combinations G; =4, G, =% and G, =%, G, = 4,
and the Hashin-Shtrikman bounds for « =10 and
« = 100. We see that the shape of the bounds found
for the symmetric cell material is replaced by a shape

Pid
(e, €2)'2

i
08 1.0

i
0.6
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0.4
VOLUME FRACTION, P

] 0.2

Fig. 3. Bounds on effective permittivity, a = 10, asymmetric
cell material. , Hashin-Shtrikman; - - - (G, = %, G, = %);
—-—(G; =% G, =H.
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that is similar to the shape of the Hashin-Shtrikman
bounds. A comparison of the improvement in resoiu-
tion shows that the improvement decreases with « and
is best at small concentrations (i.., ¢ approaches
zero or unity). The improvement at ¢ = 0.5 for « = 2
is 809, for « = 10 is 45%, and for « = 50 is 20%.

In the limit « approaches infinity, we compare the
absolute bounds for the asymmetric cell material with
the Hashin—-Shtrikman bounds.

Upper bound Lower bound

Asymmetric cell  2pa? (1 — @ + ¢?) ot (+o+9¢?
material 3 (l—gp+3g) =)0 —@+¢D
Hashin- 2<}70c& a?
Shtrikman I-g 1—-¢ 1 +29)

For all values of « > 1 the asymmetric cell material
bounds are inside the Hashin—Shtrikman bounds,

E. Determination of G, and G,

In the preceding sections we have shown that
improved bounds for the effective permittivity may
be determined if a single number G is known for a
symmetric cell material and a pair of numbers G,
and G, is known for an asymmetric cell material. We
shall discuss here a number of alternate ways of
determining these G’s for real materials which fall
within our two bound classifications.

First, we already know that spherically shaped
cells have a G of § and plate-shaped cells have a G of
1. If observation of the material cross section reveals
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either or both of these cell shapes, we know the corre-
sponding G. This method of observation may be
extended to cell shapes whose G is determined by any
of the subsequent methods.

Although we have shown that the bounds converge
at small concentrations only for G’s of } and %, the
bounds also converge when we consider small
perturbations (i.e., « approaches unity). This con-
vergence is expected because Beran! used the small
perturbation solution as the admissible function in
the variational principles to determine the bounding
equations (2.1) and (2.2). If we let ¢ approach zero or
unity, let « approach unity in the bounding equa-
tions, and set the coincident solution equal to the
small concentration solution for any shape inclusion,
we can solve for G. Using the small concentration
solutions summarized by Reynolds and Hough,® we
find we can solve for the G of all randomly oriented
spheroids. We find that for needles G = §, oblate
spheroids § < G < %, and prolate spheroids } < G < }
(see Appendix F).

If it is possible to construct a small-concentration
sample of the composite of interest without changing
the cell shape, bounds may be found on G by meas-
uring the effective property of the sample and putting
this value in the bounding equations. Since the
accuracy of this method increases with decreasing «a,
it might be advantageous under certain circumstances
to measure the effective property for which « is the
smallest (i.e., although the « for dielectric constant
is high, the o for thermal conductivity might be small).
This must be tempered by the knowledge of which
effective property may be most accurately measured
and the difficulty of making measurements for small
«. This method is applicable for determining the value
of G for irregular cell shapes.

G, and G, may also be determined from their
defining equation (2.29). In order to determine
£1(0, r,s) and g,(0, r, s), the following mathematical
experiment must be performed. The experiment con-
sists of measuring the frequency with which the
vertices of a triangle of coordinates (0, r, s), dropped
randomly on a cross section of the composite, fall
within a single cell. This experiment must be repeated
for various triangle coordinates. Corson'® has per-
formed an experiment similar to this, in which he
measures the frequency with which all three vertices
of the triangle fall in any cell having the same property,
for composites of sintered metals. The experiment for
determining g,(0, r,s) and g,(0,r,s) may also be

9J. A. Reynolds and J. M. Hough, Proc. Phys. Soc. (London)

B70, 769 (1957).
10 Experiment being conducted at the Towne School, University

of Pennsylvania, as part of Ph.D. thesis by P. B. Corson.
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conducted on a computer by characterizing the cell
boundaries by a coordinate address and the location
and orientation of the randomly thrown triangle by
random numbers. A criterion can be established for
determining whether or not the triangle vertices are
inside a cell; then the determination of g,(0, r, s) and
G follows directly.

F. Higher-Order Correlation Functions

We have seen in the preceding sections that the
three-point correlation function provides information
about the geometry of the cells which compose the
material, and this information reduces our uncer-
tainty concerning the effective property of the com-
posite. For a fixed volume fraction we note that
platelike cells in a matrix have higher effective prop-
erties than spherelike cells. We reason that the higher
effective property is related to the greater tendency
of a fixed volume fraction of plates to form a con-
tinuous or nearly continuous path through the
material than spheres. Thus the cell geometry that
tends to form a continuous path is more strongly
felt and leads to an effective property near the Hashin~
Shtrikman upper bound for ¢ < }. Based on these
observations, we expect higher-order correlation
functions to contribute geometrical information
concerning the tendency of cells to form paths
through the composite.

On the above supposition, it might be possible to
devise a systematized approach to determine the
degree to which a particular cell arrangement tends
to form a continuous path. From this determination
we could determine whether an estimate of the
effective property should be made near the upper or
the lower bound for a particular set of G’s.

G. Empirical Validation

A large number of experimental studies of the
effective properties of two-phase materials are avail-
able in the literature.’*"15 A relation which Landauer
has given for a mixture of materials where all the
regions are spherical is

@(ey — €*)/(e; + 2€*)
+ (1 = §)le — Mfley + 26%9) = 0.

Landauer found this expression to be a good approxi-
mation to most of the experimental data he analyzed

(2.35)

11 R. Landauer, J. Appl. Phys. 23, 779 (1952).

12G. P. DeLoor, “Dielectric Properties of Heterogeneous
Mixtures,” Ph.D. thesis, University of Leyden, Leyden, 1956.

18 A, Sugawara and Y. Yoshizawa, J. Appl. Phys. 33, 3135 (1962).

14 C. Herring, J. Appl. Phys. 31, 1939 (1960).

15 W. Woodside and J. H. Messmer, J. Appl. Phys. 32, 1688 (1961).
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(e.g., Cd-Pb, Matthiesson; Cu-Fe, Ruer and Fick;
CuSb-Sb, Stephens; Bi-Bi,Pb, Herod). In Fig. 5 we
see that Eq. (2.35) always falls inside the bounding
equation for spheres (i.e., G, = G, = 3); thus all
these experimental data verify the assumption of
spherical cells.

For dilute suspensions of regularly shaped particles
we have shown that the bounding equations converge
to the exact solutions; hence these results are verified
by all dilute suspension measurements of regularly
shaped particles that agree with the previously derived
exact solutions.

For the other experimental studies it is difficult to
make comparisons because the shape factors G, and
G, are unknown for the materials tested.

3. SIGNIFICANCE OF G

Improved bounds for the effective permittivity are
determined if a single number G is known for a sym-
metric cell material and a pair of numbers G, and G,
are known for an asymmetric cell material. The
concept of this number G is linked to the cell material
from which it was derived; hence, to understand its
usefulness, we must examine the limitations of the
cell-material model. The fundamental assumption
required to define the cell-material model used in
this paper was that the property of a cell be inde-
pendent of the property of any other cell. The ques-
tion then is, How does this requirement limit the
physical models which can be represented by the cell
material ?

First, let us consider the case of a dilute suspension.
For this case, there is no problem since we can con-
sider the suspension materials to be cells of a particular
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distribution of sizes and shapes and the matrix
material to be made up of cells of all sizes and shapes.
For such a combination of materials, we can pack a
space without preference regarding the type of cell
which is inserted at any location. The cells of the
suspension are far apart so their shape will not inter-
fere with the packing procedure, and there is so much
freedom in the size and shape of the matrix material
cells that we are certain that the space can be
completely filled without violating the fundamental
assumption. Since the bounds on effective properties
for the dilute suspension are independent of the G
value of the matrix cells, the cell-material model is
applicable to dilute suspensions without difficulty.
This even applies when the actual construction of the
material violates the fundamental assumption, i.e.,
suspended particles tend to cluster together, since we
can consider the clustered particles to be a single cell
of a different geometry. Since we have left so much
freedom in the cell construction of the matrix, we
will not violate the assumption of the cell-material
model. This will be true even when the clustered par-
ticles are not contiguous since we can make them
mathematically contiguous with appropriate imaginary
slices through the matrix material. This is further
verified by the fact that we can derive the bound equa-
tions for dilute suspensions without the cell-model
assumption.

Let us attempt to generalize this model to the finite
suspension. Since the suspension particles are close
to each other, we see that a problem can arise when
we attempt to pack an empty space without regard
as to which type cell is inserted; i.e., assume the
suspension is made up of spheres of the same diameter
which will not fit at certain locations in the packing
procedure. On the other hand, if we allow the sus-
pension spheres to be any diameter, we can still fill
the space without violating the fundamental assump-
tion. Thus we see that, for the finite suspension, there
are certain restrictions on the size and shape of the
distribution of cells which will satisfy the assumptions
of the cell-material model. What happens when we
have a distribution of suspended particle sizes and
shapes that violates the fundamental assumption? It
was never assumed in the development of the cell-mate-
rial model that the cell shape and size distributions
be the same as particle shape and size distribution;
therefore, the cell-material model is so general that
cells of some value G will be a good approxima-
tion to any finite suspension. The problem, however,
is that in this case observation might lead to a false
conclusion as to which G is appropriate, although it
is doubtful that the new G will vary much from the
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G that represents the particle shape. Since the bounds
on effective properties of finite suspensions depend on
the value of G, of the matrix cells (whose shape and
size were left arbitrary to assure filling the space
without violating the fundamental assumption), the
bounds will be those defined by G, of the suspended
particles and the values of G, (in the range 4 to i)
which give the highest upper and lowest lower bound.
These bounds will still result in a substantial improve-
ment over the Hashin-Shtrikman bounds for volume
fractions of up to approximately 0.6.

For cell-like materials (e.g., sintered materials and
eutectic alloys), the cell model is a natural repre-
sentation, and the G values will represent the geom-
etries of the component cells.

We can not represent every mixture by a cell-
material model, as evidenced by the fact that the
Hashin—Shtrikman bounds which refer to concentric
spheres fall outside the range of our bounds. But
even in this case, which clearly violates the funda-
mental assumption of the cell-material model, the
Hashin-Shtrikman bounds only deviate slightly from
the extreme bounds (G; =14, G, =4 and G, =},
G, = 1) for all values of volume fraction and the cell
model is a fair approximation.

APPENDIX A: DERIVATION OF THREE-
POINT CORRELATION FUNCTIONS

The two three-point correlation functions defined in
Sec. 2 are
var = (€'(0)'(0)e'(s)) (AD
and
EVLLION
TN )

For a two-phase cell-like material we can write Eq.
(A1) in the alternate form

(A2)

vor = '8 + €’ + 'l + Fiy + 1]
+ €%y + By + B3
+ eje R + L + hy) 4 by, + BE, 4 AL
+ €321 + sl Z1n + Ziay + Zayi]

+ €1,552[2112 + Z212 + 2221] + 5;32222’ (A3)

where

€{ = € — <€>9 Eé = €3 — <€>’

g. = £,(0, r, s) is the probability that three points
(0, r,s) are in the same cell with material
property €,;
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Py = hy(0, 1, 8) is the probability that two points
(0, r) are in the same cell with material prop-
erty €, and a point (s) is in another cell with
material property e,,;

B, =R (0,r,s)is the probability that two points
(0, s) are in the same cell with material prop-
erty €, and a point (r) is in another cell with
material property e,,;

Bl = R (0,1, s) is the probability that two points
(r, s) are in the same cell with material prop-
erty e, and a point (0) is in another cell with

material property e,,;

Zomp = Zomp(0,1,8) is the probability that three
points are in three different cells, where
points O, r, and s are in cells with material
properties €,, €,,, and €,, respectively.

Also

SL=08, &= (1- (P)gz’ (Ad)
where

g, = 8(0, r, s) is the conditional probability that all
three points are in the same cell of material
property e,, given that one of the points is in
a cell with material property ¢, .

We assume

his = @(1 — @)hy,
oy = (1 — ‘P)th,

hiy = (1 — @),
= (1 — ¢)h},

iz = ¢(1 — @',
By = (1 — @)h".

by = ¢°hy,
hyy = (1 — @)phs,,
by = ¢°hi,
Iy = (1 = ¢)phs,
i = ¢*h",
Ry = (1 — @)gha',
This assumption implies that the material property
of a cell is statistically independent of the material

property of any other cell.
Also we assume

(AS)

2111 = ¢*Z, Zyp = 2211 =2Zin = ¢*(1 — ¢)Z,

Zygp = a2 = Zogy = 9(1 — 9)*Z, Zopo = (1 - 9yzZ,
(AS)
where

h, = h,(0, r, s) is the conditional probability that two
points (0, r) are in the same cell and point (s)
is in another cell, given that one point (0 or r)
is in a cell of property «,;

h% = h%(0, r,s) is the conditional probability that
two points (0, r) are in the same cell and point
(r) is in another cell, given that one point (0 or
s) is in a cell of property ¢,;
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hl = Y0, r, s) is the conditional probability that
two points (r, s) are in the same cell and point
(0) is in another cell, given that one point
(r or s) is in a cell of property €,;
Z =Z(0, r, s) is the probability that three points are
in different cells.

By taking into account all possible ways that three
points can fall into a cell material, we have

Z=1—g — & —hy—h}y — b1 — by, — B,
— Mz~ hoy — hyy — Ry — By — B3, — hy (A7)
or
Z=1-gg —(1—9@lg— ¢y + hi + b))
— (L= @)(hy + 3 + h3).
Substituting into Eq. (A3), we obtain

(A8)

Var = € 9g + €5 (1 — ?)g>
+ (e'¢" + eeip(l — @)y + i + hY)
+ (e1e’¢(1 — @) + (1 — @)*)(hy + by + 1Y)
+ (9" + 3l (1 — ¢) + 3qe’p(l — ¢)°
+ e’(1 — @)1 — g, — (1 — ¢)gs
— @(hy + b+ B ~ (1 = @)(he + B: + h3Y)).

(A9)
Now

fn(r) = gﬂ, + hﬂ,’
fa(s) = g, + by,
f (r S) = gn + h];zl’

(A10)

where f,,(r) is the conditional probability that 2 points
(0, r) are in the same cell with material property ¢,
given that one point is in a cell with material property
€,; fL(r) and f1l(|r - s|) are defined in a similar way,
except they refer to points (0, s) and (r, s}, respectively.

Substituting for the #’s in Eq. (A9) and using the
equality ge; = —(1 — @)e,, we obtain for any cell

material
2
¢ ]
— g .
1—er

If we assume a symmetric cell material (g, = g, = g),
we obtain

YVar = e’f‘w[gl (A11)

37— 2¢)
Va1 = € a— )2 g.

Using the same approach to derive yp;;, we can

(A12)
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write Eq. (A2) in the alternate form

612 _ e_/22 /2
Yag=—&H + — & + —(hu + by + hyy)
€ € €
+ 992 (g + hu) + SR S5 Ry, 4 R
€ € €
o
+ 2, + (/722 + Fay + B
€
e
1 —~Zmn +L Zzn + e (Zyn1 + Z410)
€1 € €1
e152
~—(Zy12 + Zya1) + 2122 + 2222
2 1 2
(A13)

By use of the relations developed before, we rewrite
Eq. (A13) as

12 2

€ €
735 = = g + — (1 — @)g.
€ €9
612 0 €/
+ (— P+ 22 g1 — <p))(h + )
€ €1

(Eorr S ou - p)ur
+ ( Lo(1 — ¢) +—<1 = 9 e+ 10

+ (— -9+ —(1 o s

( ¢<1—¢)+z” (1 - p)
1
£ 288 g — g +—<p<1—<p)
€2 €1
Eéz 3
+=0 -9 )(l — 98 — (1 — ¢)ge
€2
— by + hl + B ~ (1 = )(hy + B: + hYY).
(A14)
Substituting Eq. (A10) into Eq. (A14) and using the
equality ;¢ = —¢,(1 — @), we obtain
EIZ
Vag = — o — D¢’ — (1 — 9)’g)

1(1“'9’)

+ @+ g(1 — )1 — @) f1" + )] (AlS)
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For a symmetric cell material, i.e., g, =g, = g and
=11 = f Eq. (Al5) reduces to
2
=8 _?
L i—w
X [(a — D2¢ — Dg + (. + (I — )M
(A16)
APPENDIX B: PROOF F =}
Fis defined as
167% Jv Jr arss3
where
y2=r24 5% 4 2rsu,
u = cos 0,
JO =1, f(e0)=0.

Choose s, to lie along x; axis; then

T ff as(df(y))( ) )-rl;ls;drds. (B2)

Change from u and r coordinates to #’ and y coordi-
nates:

u=s——m, r =y 4 5+ 2syu
r
Then
ﬂfl d (af(y))K dydpds, (B3)
1677 s*dy\ 0Os
where
-1
Ky =| LX) __gy 2
+1 (y* + s + 2ysu’) 3y*
Integration with respect to ¢ and y yields
1 1 df(s) (B4)
3(477) st ds
Finally,
F=1 (BS)

Similarly, if in Eq. (B1) f(¥) = f,()), where £1(0) = ¢
and f,(0) = 1 — ¢, we obtain

Fi=}g (B6)
= 3(1 - 9. (B7)

APPENDIX C: PROOF G DEPENDS ON CELL
GEOMETRY, BUT NOT THE DISTRIBUTION
OF CELL DIMENSIONS OF EACH
GEOMETRY

By definition,

2
_ 1 ffag(o, T, S) I'mSm dr ds.
1672 Jo Jut Oryds; st

(C1)
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For a discrete number N of cell shapes,

N
g(O, r, S) = 2 gi(Os I, s)ki’ (C2)
t=1

where k, is the frequency of the ith cell shape; g; is the
probability of three points being in the same cell of the
ith shape, given that one of the points is in a cell of
the ith shape.

Also
N
G = Gk,, (C3)
i=1
where
G, = f (0, T, ""”drds. C4
167° Jo Jo! ar3as3g( r? ©)

Now consider that for each cell shape a distribution
of sizes exists, so that

M
gi(Os r, S) = z lug;(o, r, S)a (CS)
=1

where /;; is the frequency distribution of sizes of the
ith cell geometry; gi(0, r, s) is the probability of three
points (0, r, s) being in the same cell of ith shape and
Jth size.

Since all cells of the ith shape differ only in size,

gi0, 1, 8) = 20, nr, n,9), (C6)

where £°(0, n;r, n;8) is the probability of three points
(0, n,r, n;s) being in the ith cell shape of average size,
and n; = scale factor.

Put Eq. (C6) into integral (C4), change coordinates,
and note that

(o)

We note that G, is independent of n; .

Thus G, depends only on the average size of cells
of the ith geometry and not on the particular distribu-
tion of sizes for that geometry. G depends on the cell
shapes which make up the distribution, multiplied by
a distribution-function weighting factor; in this sense
it is dependent on the average geometry.

APPENDIX D: DERIVATION OF BOUNDS
FOR TWO-PHASE CELL MATERIAL
The upper bound on €* is given in Eq. (2.1) as
1 e
<€>I
(€%

e < (e) — (D1)

1+
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where
WIS
'(0)¢'(r)e'(s)y == dr d
16772(5)2 J; J;‘ Ory0s, (€O meLs) ris?
(D2)
In Appendix A we derived
(P‘l
€O = o5~ T m] @
Substituting Eq. (D3) into (D2), we obtain
673 (p3
I =-110G G, |, D4
e ‘:‘P 1= (1 - o) 2:| (D4)
where
G 5% e d D5
" lont f g arsasag" s drds. (D3)
Using the relationship
() = per + (1 — ey (D6)
in Eq. (D1), we obtain
e* 1 I:
— <1+ el@—-1
(et~ ot |
_ ol — @) — 1) }
L+ (a2 = Dl + 3((1 — 9)°G, — ¢°Gy)]
(D7)

where
o = gfe;.
If we have a symmetric cell material, Eq. (D7)
reduces to

€*

<t Hes

_ ol — @)(a — 1)° ] (D8)
1+ (e — 1)(p + 3(1 — 2¢)G)

(€1€2)
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The lower bound for €* is given by Eq. (2.2):
(i/e_’\)z "
2
&> [ ——2 \/é\“@ ., (D9)
3<e> \e/ ™
where
_ f 2 Je0)e(s) IS s,
167%e) Jo Jo Orgds; \ €(0) /1%
(D10)
In Appendix A we have shown that
/<@e )\
\ « /
62
== — -1 : — (1 — 1
(= (p)[(oc N8 — (1~ 9)°gy)
+ Gt gt (e o))
(I1—-9)
(D11)

Solving Eqs. (D10) and (D11), we obtain

2
€

@22}(1_@

+ (e + (1 — oc))((l ; D 4 . * - F2)jl
(D12)

[( — 1)(¢*Gs — (1 ~ ¢)'Gy)

Now F, = ¢[3 and F, = (1 — ¢)/3; hence Eq. (D9)
may be rewritten as

‘*% e g -1 -2

(e1€2)

For a symmetric cell material this reduces to

(€162)

E*%zﬁ/[(a— oo — 1)) —

(L= 2’ ~ 9y ] O13)

31 4 a + 3o — (@G, — (1 ~ 9)%Gy)

(=21 = g)yp ] (D14)

14+ o+ 3a—1)2¢ — G

APPENDIX E: DETERMINATION OF BOUNDS ON G

The upper bound on €* is given by

*

1
£ <1 — 1) —
(6162)& < a%[ + ol )

14 (o« ~ 109 + 3((1 — 9)%G, — 9G]

Ip(l — @)(a — 1)° ] ED)
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From physical considerations ¢, €;, and ¢* must
all be positive-finite quantities; hence G, and G, must
have values which do not violate this constraint.
Therefore, the right-hand side of Eq. (E1) must be
positive or, alternately,

1 4+ ¢(a— 1)

. bp(l = g)(x = 1)°

T+ (= D(g + 3((1 ~ ¢)°G, — ¢°Gy))
for all values of & > 1.

First we shall consider the symmetric-cell case, for
which Eq. (E2) reduces to

3ol — @)(x — 1)*
14 (2 — (g + 31 = 2¢)G)
(E3)
In this case the inequality must hold for all values
of ¢, since the value of ¢ does not change the geo-
metric structure.
When « = 1, Eq. (E3) is satisfied. As « becomes
large compared to unity, Eq. (E3) becomes

(E2)

1+ pla— 1) >

fp(l — ¢)o® (E4)
14 a(p + 3(1 — 2¢)G)

If pa >> 1, Eq. (E4) becomes
i1~ 9)
T+ 31 - 2¢9)G

When ¢ equals unity, the numerator becomes zero
and the inequality holds for all values of G. However,
for ¢ = 1 — n we obtain the inequality

G # (1 — 9)/3(1 — 2y).

When 0 < 5 < %, we find that G cannot take on
values 1} < G < 0. For 3 < 5 < 1, we find G cannot
take on values —oo < G < 0. Thus we have bounds
on G which obey inequality (ES5):

0<G <L

1+ go >

(E5)

(E6)

(E7)
Now consider the case ¢ « 1; Eq. (E4) becomes
(1 + p)pa > 1/9G. (E8)

If g« 1, we obtain inequality G # 0; as «
increases in value, G cannot equal values greater than
zero. In the limit g« 3> 1 we obtain the bound on G:

G >3 (E9)
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Since negative values of G violate the condition of Eq.
(E7), we have bounds on G:

F<G6<LL (E10)

For the asymmetric cell material we find that Eq.
(E2) is satisfied when « = 1. We first consider the
case when ¢ is K 1 or I — ¢ « 1. When « becomes
large compared to unity, Eq. (E2) becomes

3ol — ) .
1+ a(p + 3((1 — ¢)*G, — ¢*Gy,))

When ¢ =0, the inequality holds, and for ¢ « I
Eq. (E2) becomes

I+ ga> (E11)

1 — 2
L+ gu> pple — 1) .
1+ (o — 1)(97 + 3(;1)

(E12)

When o = 1, the inequality holds for all values of
G,. For ga < 1 Eq. (E12) becomes

S 390 = 1)*

T 14 3(a— DG, (EL3)

Equation (E13) holds only for positive values of G;.
As « increases so that ga > 1, Eq. (EI12) reduces to

1 > 1/3(¢ + 3Gy). (E14)
Since G, is positive, we obtain the bound
G253 (E15)

in order that Eq. (E14) be satisfied.
When ¢ =1, Eq. (E12) is satisfied for all values of
G,and G,. Forl — ¢ =K 1, Eq. (E12) is

(o — 1)
*Z (- (1~ 3Gy

(E16)

As o increases in value, Eq. (E16) is satisfied if G,
is positive and

Gy # 3 + [1/3(a — 1] (E17)
or G, is negative.
Varying «, we obtain the bound
G, < & (E18)

To obtain the other bounds on G; and G,, we must
examine the lower-bound equation

(e:;)* = “/ [" +ell —w) =

(o — DX1 — ) } (E19)

14 o+ 3« ~ (¢°G, — (1 — 9)°Gy)
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Physical considerations require that the right-hand
side of Eq. (E19) be positive and finite; therefore,

o+ ¢(l — o)
%(}9(“ - 1)2(1 — (P)¢P E20
2 14+ o0+ 3 — ])((Psz — (1 - ‘P)2G1) A )

When ¢ = 0, Eq. (E20) is satisfied, and for ¢ « 1
we obtain

3a— 1

o> . (E21)
1 4+ a—3x— 1)G,

For « = 1, Eq. (E21) is satisfied, and as « increases
in value we obtain the requirement that

Gy # (1 + )3 — 1) (E22)

or the bound

G, < (E23)

ol

When ¢ = 1, Eq. (E20) is satisfied and for =1 —
¢ < 1, we obtain

w2y Z(i ;(i)z—n e, Y

When 7o « 1, this reduces to
12— j(j_ ;(i)i’ R (E25)

This inequality is satisfied for
Gy # —(1 + «)f3(x — 1). (E26)

Hence G, must be positive.
Now consider the case no > 1. Equation (E24)
reduces to

G, > 4. (E27)

Therefore, we obtain the bounds
+ <G <4, (E28)
<G <% (E29)

for values of ¢ near 0 or unity. Consider now the
case when ¢ has arbitrary values between 0 and 1.
For this cell structure values of G; and G, may be
determined by consideration of only the shapes of the
cells. This determination is made independently of ¢.
In addition, any cell shape is possible in the case of
small concentrations. Thus, for example, the cells
associated with G at finite @ may be made the inclu-
sions in another material where ¢ <« 1. Similar
arguments for 1 — ¢ & 1 show that Eqgs. (E27) and
(E28) hold for all values of ¢.
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APPENDIX F: THE GEOMETRIC
SIGNIFICANCE OF G

The upper bound on €* may be written for an
asymmetric cell material:

U=1+ ¢a—1)
~ 31— ) — 1)
1+ (@ — 1)(g + 3((1 — ¢)’G, — 9*Gy))’
(F1)

where U = the upper bound on €*/e,.
Similarly, the lower-bound equation may be written

as
L=oc]:oc+tp(1—oc)
3 1 — w)*(1 — @)o }“1
1+ o+ 3@ — 1(¢%G, — (1 — ¢)*Gy)]
(F2)

where L = the lower bound on €*/e,.
For small concentration Eqs. (F1) and (F2) reduce
to

o—1
Us=1+ g(x— 1)(1 . m) (F3)
and
_ (a—1) 4(x — 1)
b=lre— (1+x1+«—Xa—nq)'
(F4)

If we set G, = 3, Eqs. (F3) and (F4) become
1+ pla = DR+ 1)
3ot

Alternately, if we set G; = £, Eqs. (F3) and (F4)
become

U=L= (F5)

3a—1)
2400

The upper- and lower-bound equations become
asymptotic at small concentrations only for G, equal
to } or 3. This can be seen by setting U = L in Egs.
(F3) and (F4) and we get a quadratic equation in G,.
Since a quadratic equation can have only two roots
and we have already shown two roots are G; = } and
G, = 3, no other value of G, yield asymptotic upper-
and lower-bound equations.

Similarly, when ¢ approaches unity, we find the
roots of G, to also be 1 and 3.

Reynolds and Hough® have summarized the small-
concentration solutions of randomly oriented spheroids
and, in particular, have shown that the small-concen-
tration solution of spheres and plates are, respectively,

i =14 3p(a = 1)

€2

U=L=1+¢ (F6)

(spheres) (F7)



2004

and

& He= D@t D

F8
€y 3“ ( )

(plates).

Equation (F8) is equivalent to Eq. (F5), and Egq.
(F7) is equivalent to Eq. (F6).

Since G is not a function of ¢, we conclude that
G = § has the geometric significance of a sphere and
G = } has the geometric significance of a plate.

Although we have shown that U and L are asymp-
totic at small concentrations for only G = } and } at
small perturbations (i.e., « approaches unity), U and
L are asymptotic for all values of G. This is to be ex-
pected because the bounding equations U and L
were derived from a small perturbation expansion.
From this result we can find the geometric significance
of any other shape for which a small concentration
solution exists. A problem of general interest is the
needle-shaped cells. Reynolds and Hough® have
shown that for random orientation the small-concen-
tration solution is

* n(6 + 1)

R F9
€ 3(2 +?7)(p (F9)

where 5 =« — 1.
Equations (F3) and (F4) for small perturbation can
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be written
U=rL=1418200G=D) - gy
3 1+ 3Gy
Solving Eqs. (F9) and (F10) for G,, we find
G; = % (needle). (F11)

Similarly, we can show that for oblate spheroids
5 < G < §, and for prolate spheroids } < G < .

The above-mentioned results can be derived
independently of the assumptions for a symmetric or
asymmetric cell material. Assume that for any two

phase material the probabilities g, g,, Ay, and Zy,
are the same order of magnitude in their dependence
on volume fraction as the corresponding probabilities
for a two-phase asymmetric cell material. This
assumption and the relation

per = —(1 — @le (F12)
reduce Eq. (A3) for small concentration to
Vor = €08 . (F13)

Following the procedure outlined in Appendix D,
the upper-bound equation reduces to Eq. (F3).

Similarly, the lower-bound equation Eq. (F4) may
be derived for a dilute two-phase material independent
of the assumption of a symmetric or asymmetric cell
matemial.
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Bounds for the effective bulk modulus for statistically isotropic and homogeneous materials have been
developed in terms of statistical information, i.e., one-point and three-point correlation function from
variational principles. Aside from the one-point correlation function, i.e., the volume fraction, this
statistical information is difficult or impossible to obtain for real materials. For a broad class of hetero-
geneous materials which we shall call cell materials, the functions of the three-point correlation func-
tion that appear in the bounds of effective bulk modulus are simply a number for each phase.
Furthermore, this number has a range of values } to 4 and a simple geometric significance. The number
1 implies a cell of spherical shape, the number } a cell of plate-like shape, and all other cell shapes, no
matter how irregular, have a corresponding number between. Each value of this number determines a
new set of bounds which are substantially narrower and always within the best bounds for two-phase
media in terms of volume fraction alone (i.e., Hashin-Shtrikman bounds). For dilute suspensions the
new bounds are so narrow- in most cases as to be essentially an exact solution. There is a substantial
improvement over previous bounds for a finite suspension and yet greater improvement for multiphase
materials where the geometric characteristics of each phase are known. The shape factor G is found to
have exactly the same range of numerical values and the same geometric significance as was found in
the determination of effective dielectric constant bounds. It was found further that under certain
conditions the bounds on effective bulk modulus and dielectric constant become numerically identical.
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1. INTRODUCTION

It was shown! that the bounds on the effective
dielectric constant of Beran® in terms of statistical
information for a large class of heterogeneous
materials could be expressed in terms of volume
fraction and a shape factor G for each phase. These
bounds were shown to converge to an exact solution
for dilute suspension and for a class of materials,
called cell materials, to be narrower than the best
bounds in terms of volume fraction alone established
by Hashin and Shtrikman® for two-phase media. The
shape factor G, which is a function of the three-point
correlation function, was shown to have a range of
values & to 4. The geometric significance of § was
shown to be spheres,  randomly oriented thin plates,
and all other geometries, no matter how irregular,
were shown to have a value within this range.

The purpose of this paper is to extend these notions
to the bulk-modulus property.

2. EFFECTIVE BULK-MODULUS BOUNDS
A. Introduction

It has been shown by Beran and Molyneux? that
the effective bulk modulus K* may be bounded by
using perturbation expansions as trial functions for
the stress and strain fields in the two standard
variational principles of elasticity. Including the

1 M. N. Miller, J. Math. Phys. 10, 1988 (1969).

2 M. Beran, Nuovo Cimento 38, 771 (1965).

3 Z. Hashin and S. Shtrikman, J. Appl. Phys. 33, 3125 (1962).

4 M. Beran and J. Molyneux, Quart. Appl. Math. 24, 107 (1966).

first-order perturbation effect led then to the following
bounds:

K* <(K) - (K")
Ay + 20y + (VKK (K™Y
(2.1)
and
*2[—1—— _ <1<’/1<>22 T’ 22)
(K) (K"IK)—~ ¥K"*u) + 2J’
where
o] J f ¢
167° Jr Jw 00,01 On,0n;
X (WOR (K M) —— dCdn, (23)
12l |n}
, 1 o
r= 16w2f;fna§iacj .o,
« (KQK@\ 1 dCdn,  (2.4)

\ w0 /1 n|

4, i, and K’ are the fluctuating parts of the Lamé,
shear, and bulk moduli, respectively, and the bracket
denotes an ensemble average, which is assumed to be
equal to the space average for a statistically homo-
geneous medium.

Therefore, these bounds on the effective bulk
modulus depend on functions of the three-point
correlation functions

W' OK'IMK'(s))y and (K'(r)K'(s)/u(0)).

Better bounds can be derived using this approach in
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terms of higher-order correlation functions, and the
bounds in terms of the n-point correlation function
will be at least as good as those in terms of the n — 1
point correlation function, with the expectation that
as n approaches infinity, the upper and lower bounds
will converge. The usefulness of expressing bounds
in this fashion depends upon the determination of I’
and J' and similar derivatives and integrals of higher-
order correlation functions. We shall see that for a
broad class of materials, which we shall define, those
functions are particularly simple, have simple physical
significance, and lead to a significant improvement
over previous bounds.

B. Symmetric-Cell Material

As discussed by Miller,! the geometry of a sym-
metric-cell material is defined as any division of the
space into cells which fulfills the following require-
ments:

(1) Space is completely covered by cells.

(2) Cells are distributed in a manner such that the
material is statistically homogeneous and isotropic.

(3) The material property of a cell is statistically
independent of the material property of any other
cell.

(4) The conditional probability of n points being
and m points not being in the same cell of a particular
material, given that one point is in a cell of that
material, is the same for each material.

Using the approach discussed,! we show in the
Appendix that for a symmetric-cell material the
three-point correlation functions which appear in
Eqgs. (2.3) and (2.4) are

= (W (0)K'(K'(s))
K[l = 29)/(1 — 9)*1g(0,1,5) (2.5)
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and
7 = (K'(DK'(s)/u(0))
= (K% polol(1 — @)){(B — D2¢ — Dg(0,1,5)
+ [B + o(1 = BIf(x, 9)}, (2.6)

where
B=mluss Ki= K —(K), pj=p —~w,

where g(0, r, s) is the conditional probability of a tri-
angle (coordinates 0, r, s) having all three vertices in
a single cell, given that one point is in the cell,
S"(x, s) is the conditional probability of a line segment
[and coordinates (r, s)] having both ends in a single
cell, given that one end is in the cell.

Substituting Egs. (2.5) and (2.6) into Egs. (2.3) and
(2.4), respectively, we obtain

g I'=3;K[p(1 = 29)/(1 — 9)"1G  (2.7)
an
J = (K u)le/(1 — 9)I3(8 — D2¢ — 1)G
+ [8+ (1 — PIF}, (2.8)
where
——dtd
akr=1 N o, £ on 0 gy G
(2.9)
167r oM léll I
(2.10)

Integrals like F are evaluated® by noting that
SHE, m) = (% — n]), and 9/3C, = —/d%,, and
f1(0) = 1, and that

F=1. (2.11)

Substituting Eqgs. (2.19) and (2.20) into Egs.
(2.1) and (2.2), respectively, we find the following
bounds for K*:

(1 — g)(a — 1)°

(2.12)
[0 = (¢ — Dol + 2y[L — ¢ + §p(4p — 1) + 38 — D1 — 290)61)

e — (1 — a)*

=

K* 1
(KK)%S—_%(1+(<1—1)¢—
182 &
and

3
g 2 (000 = e
152
where

«= KK, 21, f=

We see that the upper and lower bounds on K* for
the symmetric-cell material depend on «, f, v, @, and
a single number G which is characteristic of the
average cell geometry.

Real materials have positive and finite effective
bulk moduli, for positive finite values of K;, Kj,

1+ gl — 1) + §a/Bn{3(6 — DIQy — 3G — 5¢] + 38 — 1}

)—l, (2.13)

Hl/,uzs Y= ,uz/Kz-

M1, te. These physical requirements put limitations
on the range of values which G may have. We have
shown! that imposing these requirements on K* in
Eqs. (2.12) and (2.13) limit the values of G to the
range

:<G6<L3 (2.14)
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Therefore G has precisely the same range of values
as the G defined in Miller,! and we shall see that the
two G’s are indeed identical. If we put the value
G = % into the bounding equations (2.12) and (2.13),
we find that the two equations become asymptotic
for small concentration (i.e., ¢ —0 or 1) and the
asymptotic solution is identical to the small con-
centration solution of spheres in a matrix. Similarly,
putting G = } in the bounding equations, they again
become asymptotic at small concentrations and the
asymptotic solution is the small concentration solu-
tion for plates in a matrix. Therefore, we assign the
geometric significance of a sphere to G = § and a
plate to G = 4, which is the same significance they
had in Miller.1

Hashin and Shtrikman® have shown that the best
bounds on K* for a two-phase statistically homo-
geneous and isotropic material when only ¢ is specified
are

K* < _1% 3o + pAy[l + (e — 1)] (2.15)
(KiKp)* o 4uy + 3[e(1 — o) + o]
and
K* S 1 3o+ 4yl + ¢(a — 1)] (2.16)

(KK T ad ay 300 + (e — D1 — )]

These bounds are the exact solution for a space
filled with concentric spheres; the upper bound
represents a low-bulk modulus core enclosed in a
high-buik modulus shell and the lower bound repre-
sents the reverse situation, When the volume fraction
of K, is small, the lower bound is the case of a high-
bulk modulus sphere in a low-bulk modulus matrix.
For this case Eq. (2.16) reduces to Egs. (2.12) and
(2.13) witha G = $, which confirms our conclusion that
G = { represents a spherical cell shape. Similarly,
when the volume fraction of K, approaches unity,
the Hashin-Shtrikman upper bound is the case of a
low-bulk modulus sphere in a high-bulk modulus
matrix. For this case, Eq. (2.15) reduces to Egs.
(2.12) and (2.13), with G = { confirming the con-
clusions of our previous discussion. In contrast,
when the volume fraction of K, material is small,
the Hashin-Shtrikman upper bound represents the
case of thin shells of high-bulk modulus material in a
low-bulk modulus matrix. In this instance, Eq.
(2.15) reduces to Eqs. (2.12) and (2.13) with G = }.
Volume fraction ¢ approaches unity, Eq. (2.16)
represents a thin shell of low-bulk modulus material
in a matrix of high-permittivity material, and Eq.

§ Z. Hashin and S. Shtrikman, J. Mech. Phys. Solids 11, 127
(1963).
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(2.16) reduces to Eqs. (2.12) and (2.13) with G = §.
This confirms that the thin-shell solution is identical
to the plate solution at low concentrations.

For ¢ = £, both Eqgs. (2.12) and (2.13) become
independent of G and consequently independent of the
geometry. This is in agreement with the known result
for a symmetric random medium that odd-order
correlation functions® become functions of lower
even-ordered correlation functions. Furthermore,
Egs. (2.12) and (2.13) are in agreement with the results
obtained by Beran and Molyneux* for the case of a
two-phase symmetric medium.

Hashin and Shtrikman® have found that their
bounds converge to an exact solution for the case in
which both materials have the same shear modulus,
ie., p = 1. Bounding equations (2.12) and (2.13)
converge to the same exact solution for constant-shear
modulus.

When 7, the ratio of u, to K;, approaches zero, the
bounding equations (2.12) and (2.13) converge to an
exact solution. Since a y of zero refers to an incom-
pressible material, this result is not unexpected. As y
increases, the bounds on K* increases in value and
separate until they reach a maximum value and
separation for y = 1.5, i.e., a Poisson ratio of zero.
Interestingly, at this value of y with o =g, the
bounding equations on the effective bulk modulus
K* reduces to the bounding equations’ on the
effective permittivity *. This is true for the bounding
equations developed here and the Hashin—-Shtrikman
bounding equations. This analogy requires further
consideration.

For all possible values of «, 5, v, ¢, and G, the new
bounding equations (2.12) and (2.13) are equal to or
inside the Hashin-Shtrikman bounding equations
(2.15) and (2.16), and for most cases the width
between the new bounding equations is a small
fraction of the width between the Hashin-Shtrikman
bounding equation.

Figure 1 shows Egs. (2.12) and (2.13) for a = 8 =
10, y = 1.0, G = %, G = 1, and the Hashin-Shtrik-
man bounding equations. We note a substantial
improvement in the knowledge of K* for all values of
@ as compared to the Hashin-Shtrikman bounds, with
the least improvement occurring at ¢ = 4. At ¢ = }
the improvement, defined as the difference in width
of the Hashin—-Shtrikman bounds and the new bounds
divided by the Hashin-Shtrikman bounds, is approxi-
mately 509, while for ¢ =0.9 and G =1, the
improvement is 839, The extreme values of the
G = } and the G = } curves represent the extremes

¢ H. L. Frisch, Trans. Soc. Rheol. 9, 293 (1965).
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for all symmetric-cell materials, i.e., for all other
values of G the upper- and lower-bound curves fall
inside these curves, except at ¢ = §, when all upper-
bound curves have the same K* and all lower-bound
curves have the same K*. If G is unknown, there is
still an improvement over the Hashin-Shtrikman
bounds and the maximum improvement occurs at
@ =4

Figure 1 reveals that the bounds on K* are narrower
for G = { (spheres) than for G = } (plates) for all
values of ¢ except ¢ = %, when all G values have the
same bounds. This is because there is a single degree
of freedom (i.e., the iocation of the spheres’ centers)
associated with a distribution of spheres, while there
are more than two degrees of freedom (i.e., the
location of the plate mass center and the rotational
degrees of freedom of the plate) associated with a
distribution of plates. There is, therefore, a higher
degree of uncertainty in the geometrical configuration
when the material has aspherical cells, hence a greater
uncertainty in the effective property of the material.
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Fic. 2. Bounds on effective bulk modulus o = § == 100, y =
1.0, symmetric-cell material:
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G=14,
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———G=3

From Figs. 1 and 2, we can see that the percentage
improvement over the Hashin-Shtrikman bounds
decreases with increasing «; but there is still a sub-
stantial improvement at very large «. For example,
at o = § = 100, y = 1.0, there is a better than 27%
improvement at @ =} and a better than 529
improvement at ¢ = 0.9, G = }.

As f increases, the percentage improvement over
the Hashin-Shtrikman bounds increases as can be
seen by comparing Figs. 3 and 4 with Figs. 1 and 2,
respectively. For « = 10, =2, v = 10, G = }, the
percentage improvement over the Hashin-Shtrikman
bounds is 839 at ¢ = 0.5 and 949 at ¢ = 0.9. For

=100, =2, y =10, G =1, the percentage
improvement over the Hashin-Shtrikman bounds is
829% at ¢ = 0.5 and 92% at ¢ = 0.9. For small §,
the change in improvement is approximately the same
at all values of «. In Fig. 5 we plot « = 10, 8 = 1 for
various values of y. As we mentioned previously, the
new bounds and the Hashin-Shtrikman bounds
converge to an exact solution for § =1, and this
figure shows how the solution increases with in-
creasing y. Comparing Figs. 6 and 7 with Fig. 1
demonstrates how the bounding equations change
with y. As y decreases, the percentage improvement
decreases so that for « = =10, y =0.5, G =&,
the percentage improvement at ¢ = 0.9 is 789,
compared to 839, when y = 1.0 and to less than 19,
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at y = 1078, However, as y approaches zero, the
bounds approach the exact solution, as may be seen
in Fig. 7.

An interesting phenomenon occurs when we con-
sider the mixed case of « > 1 and g < 1. The
Hashin-Shtrikman bounds reverse themselves: that
is, the upper-bound equation becomes the equation
for the lower bound and the lower-bound equation
becomes the equation for the upper bound. The
bounds also reverse themselves in the sense that for
G =1 (spheres), the new bounds are near the
Hashin-Shtrikman upper bound, for § approaching
zero, and near the Hashin-Shtrikman lower bound,
for # approaching unity, which is the reverse of what
occurred for g > 1. Conversely, the new bounds for
G = 1 (plates) are near the Hashin—-Shtrikman lower

0.5
VOLUME FRACTION, ¥

bound for ¢ approaching zero and near the upper
bound for ¢ approaching unity. The bounds spread
and it is seen that the percentage improvement
decreases as  approaches zero. For « = 10, 8 = 0.5,
y = 1.0, G = 4, there is an 839, improvement at
p=05anda96%at ¢ =09. Fora =10, =0.1,
y =10, G =4, there is a 569 improvement at
@ = 0.5 and an 87 %, improvement at ¢ = 0.9.

Although the mixed case considered here of & > 1
and f < 1 falls outside the assumptions of Hashin—
Shtrikman,® Walpole” has shown that their bounding
equations are valid for this case.

It is shown! that, at small concentrations, the
effective permittivity bounding equations hold for all

7 L. J. Walpole, J. Mech. Phys. Solids 14, 151 (1966).
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two-phase statistically isotropic and homogeneous
materials and are not restricted to symmetric-cell
materials. Following the same procedure, the upper-
and lower-bound equations (2.12) and (2.13) may be
derived for a dilute two-phase material, independent
of the assumption of a symmetric- or asymmetric-cell
material.

C. Asymmetric-Cell Material

We shall now investigate a class of materials for
which the geometry of the cells of the two materials
is dissimilar. Consider the space to be subdivided by
a large number of closed surfaces and let us call the
enclosed regions cells. The subdivision of the space is
arbitrary except for fulfilling the following require-
ments:

(1) Space is completely covered by cells.

(2) Cells are distributed in a manner such that the
material is statistically homogeneous and isotropic.

(3) The material property € of a cell is statistically
independent of the material property of any other cell.
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Any material which satisfies these requirements
shall be called an asymmetric-cell material and
models of these materials are described in Miller.?

For this material, using the approach formulated
in Miller,) we find that the three-point correlation
functions that appear in Eqs. (2.3) and (2.4) are

var = (W(0)K'(r)K'(s))
= mKHeg,(0,r,8) — [¢*(1 — ¢)*]g:(0, 1, 5)}
(2.17)

5.0

4.0

K*
(K, Kz)uz

1
0.8 i.0
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FiG. 7. Effective bulk modulus asymmetric-cell material for
a=Ff=10y =10

Hashin-Shtrikman and all combinations of G, and G,.
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TN Mo
_KE 2[5 - ipie0
MU_¢[w 980, 1, 5)
+ (1 — ¢)°g,(0, 1, 5)]
-Hw—m+mw U= 9 g )
Fu 2.18
tao g )} 19
where

£.(0, 1, s) is the conditional probability of a triangle

(0, r, s) having all three vertices in a single cell of

material property K, and u,, given that one point is
in the cell;

Ji(r, s) is the probability of a line segment (r, s) hav-
ing both ends in a single cell of material property
K, and u,.

Substituting Eqs. (2.17) and (2.18) into Egs. (2.3)
and (2.4), we obtain

I' = yKP3{G, — [¢°(1 — 9)°1Gs}  (2.19)

2011
and
_KE 9 T35~ nieG, — (1 — 9)%Gy]
MU_@[w e v
+w+whwW“;”ﬂ+uf@“ﬂ’

(2.20)
where we define

~——dr d
2.0, rS)HII r ds

2.21)

G 1677' L 1 Or,0r; 8sas

and

11’____dd
f“)uurs

(2.22)

En 1677 L v 8r3r asas

As shown in Sec. 2.2, G, and G, are numbers which
depend on the geometries of the average cells of
material property K, and K,. Integrating Eq. (2.22),
wefind Fy=¢and F, =1 — ¢.

Substituting Egs. (2.19) and (2.20) into Egs. (2.17)
and (2.18), we obtain

(KKKz)% <= I (1 + (e —1) —
T2 ot —2) +

o1 — ¢)(a — 1)°

¢(1 — g)e’ )

@ — (@ — D)o + 2p{1 — 4¢ + 3(4g — 1) + 3(8 — DIGy(1 — ¢)* — Gy}’

(2.23)

T+ g — 1) + (/8838 ~ DBIGue* — Gl — 9)'] — 4o + 3(B —

When G, = G,, Egs. (2.23) and (2.24) reduce as
expected to the symmetric-cell material bounding
equations.

For all possible values of «, 8, ¥, ¢, Gy, and G,,
the bounding equations (2.23) and (2.24) fall inside the
Hashin-Shtrikman bounds. The bounding equations
attain their highest upper bound and lowest lower
bound for the combinations G; =3, G, =4, and
G, = i, G, = %, respectively, for 5 greater than unity.
When g is less than unity, these combinations of G,
and G, reverse themselves, but still give the extreme
bounds. Hence, these combinations constitute absolute
bounds for asymmetric-cell materials. In Sec. 2.4, we
discussed why these absolute bounds fall inside the
Hashin-Shtrikman bounds.

For g greater than unity and ¢ approaching zero,
the new bounding equations converge to the Hashin-
Shtrikman upper bound when G; =} and to the

T
m& 224

Hashin-Shtrikman upper bound when G, = {. Simi-
larly, when ¢ approaches unity, the same convergence
occurs when G, = 3 and G, = }, respectively, con-
firming our conclusion regarding the geometric
significance of these two values of G.

In Figs. 8 and 9, we plot the new bounds for the
combination Gy =4, Gy =14, and G, =%, G, =1
and the Hashin~Shtrikman bounds for various values
of «. As was the case for the effective permittivity,
we see that the shape of the bounds found for the
symmetric-cell material are replaced by a shape that is
similar to the Hashin-Shtrikman bounds.

As discussed in Sec. 2.2, the bounding equations
developed here at small concentrations are not
restricted to asymmetric-cell materials, but hold for
all two-phase statistically isotropic and homogeneous
materials.

As was the case for the symmetric-cell material when
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y = 1.5 (equivalent to Poisson ratio of zero) and
« = f, the bounding equations on the effective bulk
modulus K* reduces to the bounding equations on
effective permittivity that were previously derived.!

All of the notions derived here for a two-phase
random media are applicable to an N-phase material.
Each phase would have associated with it a G, which
is characteristic of the average shape of the cells with
the property of the nth phase.

D. Determination of G, and G,

The following methods of determining G, and/or
G, for the effective permittivity case have been
discussed!:

(1) Observation (i.e., look at the cross section of
the sample).

(2) Small-perturbation analysis.

(3) Empirical measurement at smali concentrations.

(4) Determination from defining equations of G
where g; and g, are obtained from a mathematical
experiment.

All of these methods are again valid for determining
G, and G,. Since the G’s have the same geometrical
significance, we may find it more convenient to deter-
mine the G’s by empirical measurements of one of the
effective properties discussed® (e.g., electric permit-
tivity, thermal conductivity) rather than the effective
bulk modulus.
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APPENDIX

The two three-point correlation functions defined
in Sec. 2 are

L'y = W (0K ()K'(s)) (AD)
I'y = (K'(1)K'(s)[u(0)). (A2)
For a two-phase cell-like material we can write
Eq. (Al) in the alternate form
r,= ﬂ{Kizgl + .uéKlzzgz + ,‘AK?U_’n + i’h + h]d]
+ P‘{K{Ké[;‘m + A
+ wsKPhlg + KoK lhey + hy)
+ i Kathay + paKe'lhes + Bk + M
+ M{Kizzlu + 1 KiKslZyye + 2431
+ ,U'éngzzu + /‘éKéK{[Zzzl + Z15)
+ uiK3Z,ps + F‘éKé2zzzz,

and

(A3)
where
P = oy — (), pg = s — (),
K, = K| — (K), K;=K;~—(K).
g, = £,(0, 1, s) is the probability that three points
(0, r, s) are in the same cell with material property ¢,;
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hym = h,m(0, 1, 8) is the probability that two points
(0, r) are in the same cell with material property e,
and a point (s) is in another cell with material property
€ms ML, = h.,(0,r,s) is the probability that two
points (0, s) are in the same cell with material property
¢, and a point (r) is in another cell with material
property €,,; AL = AL (0, r, s) is the probability that
two points (r, s) are in the same cell with material
property €, and a point (0) is in another cell with
material property e,,; and Z,,. = Z,,. (0, r, s) is the
probability that three points are in three different cells
where points 0, r, and s are in cells with material
properties €, €,,, and ¢,, respectively.

Also,

& = 981,

&= (1 — ¢)ga, (A4)

where. g, = g,(0, r, s) is tHe conditional probability
that all three points are in the same cell of material
property ¢, , given that one of the points is in a cell
with material property e, .

We assume
by, = ‘P2h1, by = (1 — )by,
hyy = (1 ~— @)gh,, 22 = (1 — @)’hy,
hll = ¢°hy, hi: = ¢(1 — @)hi,
by =~ @)phz, hpp=(01— ¢)’hy, (A5)
i = ¢'h', b = o(1 — @)y,

B = (1 — p)ohy', by = (1 — ¢k’
This assumption implies that the material property
of a cell is statistically independent of the material

property of any other cell.
Also,

lel = ‘Paza 2y=2 =2 = ‘PZ(I —9)Z,
290 =291 = Zpp; = (1 — <P)2Z, Zyso = (1 — ¢)°Z,
(A6)

where A, = h,(0, 1, s) is the conditional probability
that two points (0, r) are in the same cell and point
(s) is in another cell, given that one point (0 or r) is in
a cell of property e, ; A = hL(0, r, s) is the conditional
probability that two points (0, r) are in the same cell
and point (r) is in another cell, given that one point
(0 or s) is in a cell of property ¢, . A! = A0, 1, s) is
the conditional probability that two points (r, s) are
in the same cell and point (0) is in another cell, given
that one point (r or s) is in a cell of property ¢,; and
Z = Z(0, r, s) is the probability that three points are
in different celis.
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By taking into account all possible ways that three
points can fall into a cell material,
i = iy — b
hzs

(AT)

Z=1—-g—%—hy— M, —

— hz = by — by — By — by — b —~

or
Z=1—g9g —(1— )8 — ¢(h, + hi + h")
— (1 — @)(he + k3 + h3Y). (A8)
Making the same substitutions as for y;; in Miller,!
we can reduce Eq. (A3) to

[. = wKPp{g, ~ [9%/(1 — 9)’lg.}.  (A9)

For a symmetric-cell material this reduces further to

2
r, = ukr8L=29, (AL0)
1-9¢
Similarly, Eq. (A2) may be written in the form
Kr2 K K/2
1_‘__“'81"1' l(hu'*'h +hﬁ
My :“2 /"
K 1K (hys + 3] K 11
H 22
KIK/ KI2
+ 2 1(521+h1)+"—hu
M #
K/2 KI2 ’2
THLS ST R LS NS
Mo 141 2]
K K, KK,
! 2(2121 + Z50) + . 2(2212 + Zyy)
1 M2
2 72
+ L Z2 + &'2222 . (A1)
M1 M2

Again making substitutions as for yy; in Miller,!
we can reduce Eq. (All) to

A (B = Dy’ — (1 = 9's
i (1

+ B+ <P(1 - PNA — )f1" + of 1}, (AL12)

where

I =

B = mlus.

For a symmetric-cell material we can further
reduce Eq. (A12) to

_ K¢
th (1 -

.
1 =

{(ﬂ - DRy — g

+ 8+ o1 =PI} (A13)
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The general form of a Lorentz covariant two-point function is written down in momentum space as an
expansion in terms of the total spin eigenfunctions. It leads naturally to a local expression for finite-
component fields, but incorporates nonlocal infinite-component fields. Explicit examples of such fields
with increasing mass spectrum are constructed. The two-point function is shown to fall exponentially
for large spacelike separations provided that the lowest mass in the theory is positive.

INTRODUCTION

Usually, when one is dealing with fields describing
particles of definite spin, the spectral representation
of the two-point function is given by an integral in
the total mass.}-? If, however, a field contains more
than one spin, then it is necessary to decompose the
two-point function with respect also to the spin
variable (i.e., with respect to the second Casimir
operator of the Poincaré group). This is always the
case for infinite-component fields. We find the form
of such a representation for a field transforming under
an arbitrary irreducible representation of SL(2, C)
(the result applies also to more general fields which
can be decomposed into irreducible components). The
clue to the solution of the problem is the use of the
formalism of homogeneous functions of two complex
variables (instead of the temsor formalism) in the
description of the irreducible representations of the
Lorentz group (see, e.g., Ref. 3 or Ref. 4, Appendix A).

For finite-component fields, Poincaré invariance
and spectral conditions imply the equivalence between
TCP and weak local commutativity.® For infinite-

* Present address: Institute for Advanced Study, Princeton; on
leave of absence from Joint Institute for Nuclear Research, Dubna,
USSR, and from Physical Institute of the Bulgarian Academy of
Sciences, Sofia, Bulgaria.
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component fields this is not the case.® In Sec. 3 we
construct explicit examples of nonlocal TCP-invariant
generalized free infinite-component fields with an
increasing mass spectrum (with respect to spin). If
the lowest mass in the theory is positive, then the
two-point function (and hence both the commutator
and the anticommutator) decrease exponentially for
large spacelike separations.

1. GENERAL FORM OF THE COVARIANT
TWO-POINT FUNCTION

A field y(x) transforming according to the irreduc-
ible representation’ [/, /;] of SL(2, C) can be written
down as a homogeneous function y(x,z) of the
complex (Lorentz) spinor z = (z,, z,) (cf. Ref. 8):

(L1

where the degree of homogeneity (v, ;) is related to
the number of the representation [ly, /;] by

w(x, Az) = A" Ay(x, 2),

v1=11+lﬂ—1’ 72=11_10_1

(12)

(we recall that the single-valuedness of the y implies
that »; — », = 2, is an integer). For the special case
of finite-dimensional representations (for »;, », non-
negative integers) w(x, z) is by definition a polynomial
of z and Z, its coefficients being the ordinary (spinor
or tensor) field components. In particular, the Pauli
two-component spinor ¢ and the vector field A4

¢ A. L Oksak and L. T. Todorov, Commun. Math. Phys. 11, 125
(1968).

7 We are using the notation of I. M. Gel’fand, R. A. Minlos, and
Z. Ya. Shapiro [Representations of the Rotation and Lorentz Group
and Their Applications (Pergamon Press Ltd., London, 1963)] for
the irreducible representations of SL(2,C). M. A. Naimark
[Linear representations of the Lorentz Group (Pergamon Press Ltd.,
London, 1964)], denotes them by [kq,c].

8 Dao Vong Dyc and Nguyen Van Hieu, Yad. Fiz. 6, 186 (1967)
[Sov. J. Nucl. Phys. 6, 137 (1968)].
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correspond in our notation to the polynomials
2
p(x, 2) = X ¢"(x)z,,
a=1

3
Alx, z) =3 AM(x)z0,2
n=0
(further, the summation sign in similar expressions
with repeated upper and lower indices will be omitted).
The relativistic transformation law for ¢ has the
form

Ula, Ayp(x, 2)Ua, A) = y(Ax + a;z47Y), (1.3)

where A4 e€SL(2,C) and A = A(4) is the proper
Lorentz transformation defined by

Ao, A* = o A

(ogis the 2 X 2 unit matrix, the o;,j = 1, 2, 3 are the
Pauli matrices).
Consider the two-point function

Fou(x — y;5 2, w) = (O ¢(x, 2)p(y, w) [0), (1.4)

where @ and y are transforming under the repre-
sentations [/, ;] and [/, /]], respectively. The
spectral conditions allow us to write F in the form

Foo(x; 2, W) = f HDK(p; 2, W= d'p, (L.5)

where 9(p) = 0(p*)0(p?) is the characteristic function
of the forward cone and

pl) + p3 pl — ip2).

pl + ip2 PO - Pa

Lorentz invariance implies that, foreach 4 € SL(2, C),
K(ApA*; zA72, wA™) = K(p; z, w).  (1.7)

Furthermore, because of (1.1), K is a homogeneous
function of z and w of degree (v, 1) and (v, v,),
respectively.

To satisfy (1.7) we require® that the kernel K is a
function of the invariants, which can be formed by the
4-vector p and the Lorentz spinors z and w.

First we find a complete set of independent
invariants.

One can construct four zero-length vectors in terms
of z and w; one obtains two real lightlike vectors

p =00t = ( (1.6)

¢, =z0,2 and 1, = wo,W (1.8)
and two complex conjugate vectors
As = ZO, W and j, = wo,Z. (1.9)

 Actually, this requirement is not independent. We shail prove
elsewhere that it follows rigorously from the invariance assumption.
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The equalities &* = #? = x* = 0 are a consequence of
the identity

gﬂﬂ(aﬂ)ab(ou)cd‘ — zeacei)é, €= iO’z —_ ( 0 1)
-1 0
(1.10)

All nonvanishing scalar products of these vectors are
proportional to the product of the complex conjugate
invariants « = zew and &:

bp=—gi=2l", ég=mr=E,=ni=0.
(1.1
More generally, the tensor identity holds:

Xadly + Xukv = &y + 16, — 80éns (1.12)

it implies, in particular, that

(Ep)mp) — (xp)Tp) = 3p°6n = p* [xf®.  (1.13)

Assuming J, > ;| (which can be achieved without
loss of generality by a possible interchange z <> w)
and taking into account the above identities, we find
the following general form for the invariant kernel
K (see Appendix A):

K(pi z, w) = ko (gpfoio(pp)s-to
x (pp)" "W h(cos 6; p), (1.14)
where

cos 0 = 1 — p’n/(p&)(pm) (1.15)

(0 is the angle between & and v in the rest frame of p).
The kernel (1.14) is single-valued if and only if
Iy £ I; are integers, which will be always assumed.

2. DECOMPOSITION OF THE INVARIANT
KERNEL WITH RESPECT TO SPIN

The kernel (1.14) describes, in general, propagation
of particles of different spins (provided that the
representation of SL(2, C) for the field is not of the
form [Jy, |l,] + 1]). We shall now find the invariant
kernels which are eigenfunctions of the spin-square
operator

§* = M, M — M, ,M"p"p,p™"

=h+§~1~p°M, p"M”,. (2.1)

Here M* are the generators of one of the representa-
tions [/, ;] or [/}, /] under consideration. In terms
of z, M*¥ can be written as

0/0z,
0 o \i 0/0z,
BY — e e e b e B v
M (zl,zz, T 652)4[7’7] 5 |
Z,
(2.2)
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where y* are the Dirac matrices in a basis in which

yu=(o g""cr,,), ys___,(oo 0)
c 0 0 —o

u
(see Ref. 4). As far as we are looking for Lorentz-
invariant solutions [of the form (1.14)] of the equation

[S% ~s(s + 1)]K(£); z,wy=0 (2.3)

it is convenient to go to the rest frame (p = 0) in
which "

1( 0 .0\
=~z — 5=
4\ oz 32’)

o) (8

[Acting on a homogeneous function, the first term on
the right-hand side of (2.4) gives /2.] Substituting (2.4)
and (1.14) (with p = 0) in (2.3), we obtain the following

equation for A:

. & d
24 o (1 + 1) cos 8
{sm @eosgy Aot (ot Hoos bl 22

+ [s(s + 1) — I(ly + D]}h(cos 8; p*) = 0. (2.9)

The general solution of this equation, regular for
cos’f =1, is

hycos 6; p*) = p(p*)PLI 7 cos 6), (2.6)

where the P*P(x) are the Jacobi polynomials
G > 1.

We would arrive at the same result starting with an
S? in which M*" are the generators of the representa-
tion [/y, ;] expressed in terms of w and 9/dw (thisis a
consequence of the spin conservation and can be
checked directly).

In general, h(cos 8, p*) is a superposition of the
spin eigenfunctions (2.6); s takes a finite number of
values if at least one of the representations [/, /;] and
{l;, /] is finite-dimensional; otherwise it assumes all
values of the form I, + » where n is a nonnegative
integer.

In the important special case where y = ¢* (and,
hence, [, = —I; >0, I, =1) the corresponding
decomposition of the invariant kernel reads

K(p; z, w) = 3 pp)K(p; 2, w)

$Z1g
— (ZBW)Zlo(zgf)ll—lo-l(wgw)ll~lu—~l

X 3 p (PP (cos §).

8210

.7
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We point out that the kernels K, defined by (2.7) are
positive-definite in this case because

3
Ks(p; Z, W) = ACZ us;(p, Z)u&;(p, W)> (28)
where 4 is a positive constant,
us;(p’ Z) = fsg(ZBp)’
B, =p’+ m + o,p2m(p* + mPE,  (29)

and the f, are the canonical basis vectors (see
Appendix B).

For finite-dimensional representations of SL(2, C),
Iy — Iy is a positive integer and K, is a polynomial
with respect to p. In that case, the (weak) locality
condition for the two-point function is equivalent to
TCP invariance,® which implies®

Ol g(x, 2)p(y, w* [0) = O] p(x, w)*¢(y, 2) |0).
(2.10)

For instance, for a local tensor field w({f,, /] =
[0, n + 1]) Eq. (2.7) reduces to

Ku;w’(p; S; 7;‘)
= [(pE)p)T" 20 pp")P{cos 6)

= Z, Ps(Pz)K?m”"vl v"(p)gm unnn T,

= Kyo(P; 1, €)s 211
where K#1°""¥» js a homogeneous polynomial of p of
degree 2n obtained from
)

ﬁ (s + k! (~ gf)"

=0 (kD¥(s — k\ 2

X g L L) gﬂk‘kp#k+l. . Pl‘np"k+l RN p"n (212)
by a symmetrization with respect to ;- u, and

vy * - - », and by a symmetric subtraction of traces, in
a way such that

Kﬂlﬂz Hp¥y" "V e ngszﬂx Ba¥eVe' Ve = (),

gﬂxftz

Taking into account that & and # defined by (1.8) are
lightlike vectors, we see that both K" and
R¥1"vn Jead to the same expression (2.11) for K.
For infinite-component fields the locality of the
two-point function is rather an exception. It implies
that K is a polynomial with respect to p* with coeffi-
cients depending on p? only.'® As an example of a

1 'N.N. Bogoliubov and V. $. Viadimirov, Nauchn. Dokl. Vyschei
Shkoly, Fiz. Mat. Nauk. 1, No. 3, 26 (1958); 2, No. 2, 179 (1959).
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local infinite-component field we take the free field
w(x, z) of mass m, transforming under some unitary
representation {/,, ie] of SL(2, C) (of the principal
series). In this case

Do 5 \ia
Kopoe(p3 7, W) = (zl’ w) (—zﬁf) B(zew)3(p* — m?),

(2.13)

W?W

where 8(zew) is a two-dimensional 6 function which
is a homogeneous function of degree (—1, —1) of its
complex argument (see Ref. 3). In this case the first two
factors do not depend in fact on p because of the
first & function. For real self-conjugate representations
(I, = 0, [, real), the free local field ¢ of mass m
corresponds to

Koor(ps & 9) = (En)"0(p* — m?).

Both examples (2.13) and '(2.14) correspond to
infinite-mass degeneracy with respect to spin. This is
not accidental. Grodsky and Streater showed recently!
that an infinite-component field with polynomially
bounded two-point function in momentum space can
be local only for infinite-mass degeneracy.

(2.14)

3. EXAMPLES OF NONLOCAL INFINITE-
COMPONENT FIELDS WITH INCREASING
MASS SPECTRUM

In agreement with the above-mentioned general
result,! all examples of infinite-component fields with
a nontrivial mass spectrum, obtained by specializing
the coefficients p,(p?) in (2.7), correspond to nonlocal
theories. However, if the lowest mass of the theory
is positive, i.e., if all p,(p?) vanish for p* < m? (> 0),
then, just as in conventional theory of finite-com-
ponent fields, the two-point function (1.5) goes to zero
as rie~™ (with some real 1) for r* = —(x — y)* > ©
{(see Appendix C). The same is true (as a consequence)
for the vacuum expectation values of both the com-
mutator and the anticommutator of ¢ and ¢* (it
would be interesting to find some more subtle
criterion for locality which would permit us to dis-
tinguish between those two).

We shall give here a class of examples of generalized
free nonlocal fields with increasing mass spectrum
in which the sum over s can be taken explicitly.

For that purpose we put

s—~lg

NC
pip) = 8(p* — mj), my=my+ a(s — Iy,

merx
N>0, 0<C<1, m>0, (3.1)
+3 I T. Grodsky and R. F. Streater, Phys. Rev. Letters 20, 695

(1968); see also H. D. I. Abarbanel and Y. Frishman, Phys. Rev.
171, 1442 (1968), where a similar conclusion has been drawn.

a > 0.
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Substituting (2.7) with this p_ in (1.5) and putting in the
(s — Ip)th term of the sum p = mn, we obtain

ch(x; Z, W) = Nf . lrQe—imanm
nO=(14n")
® da
—ignzya—lpp(0,21,) & 1
X Y (ceTianeyi=lop -2t P
s=lp n

— szlof Qe-imo(mc)
n0=(1+0")}

1 ; d’n

x — IR + ce—-ta(nw) + 1 —2e 2 It

R [ ] 2n°

= Fyey(x; W, 2), (3.2)

where

R = {1 — 2c cos fe '™ 4 c*exp [——2ia(nx)]}*,
Q = (znw)o(zpD) o (wnwyte?, (3.3)

and the range of integration is the upper unit hyper-
boloid n® = (1 4 n?)?%. All other two-point functions
(as well as all truncated Wightman functions) are
zero by definition. The field ¢(x, z) so defined is
TCP-invariant but not weakly local. For the mass-
degenerate limit a = 0, if we put ¢ =1, m, = m,
ly=0,and [, = }, we find a local field of the type
(2.14).

It would be interesting to analyze the implications
of locality on the two-point function in the case when
it is a Jaffe-type generalized function,'? and to find
whether the Grodsky-Streater “no-go theorem™ ! can
be extended to this case also. We hope that a further
investigation of the examples provided by the repre-
sentation (1.5) and (2.7) may give some hint for the
solution of this problem.
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APPENDIX A: DERIVATION OF THE
REPRESENTATION (1.14) FOR THE
INVARIANT KERNEL

We first determine the general form of the invariant
monomial

M =« = (xp)" (7p)"(£p)(np)°
12 A. M. Jaffe, Phys. Rev. 158, 1454 (1967).

(A1)
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of degree of homogeneity (v, v,) [Eq. (1.2)] with
respect to z and (»,, »,) with respect to w. Recalling
the definition of «, &, #, y in terms of z and w [see
(1.8), (1.9)], we find the following set of equations
for the exponents in (Al):

a+b+e=v, =L+ -1,
a4 byt+d=vi=141;—1,
ay+ by +c=v,=1, — I, — 1,
g+ b, +d=vi=1—1— 1.
The general solution of the system (A2) may be
expressed in terms of two arbitrary parameters k
and A:
a, =1l + [ + k, a, =k,
by=1+1—1lg—k, by=271—k (A3)
c=h—lh—-1—-4 d=L—-1l,—-1—41
Substituting (A3) in (A1) and using (1.13) and (1.15),
we find

M= Klo+lo'(xp)lu—lu'(fp)ll—lrl
(np)ll’—lo-l( KK )k(lpip)l
2P Xp/\Ep - np
= kot (yp)e (Epy mp) T
X 24P — cos O)F(1 + cos H)**.  (Ad)

The homogeneous invariant kernel X is a superposi-
tion of such monomials and hence has the form (1.14).

We mention that the scalar products p& and py are
always positive (for &, = |§], 7, = nl, p* > |p}) so
that any (complex) power of these products is well
defined and regular in the domain of integration in
(1.5). This is not the case for the first two factors in
(Ad) for (1.14)]. That is the reason why we ask the
exponents of « and yp to be positive and apply (1.14)
only for Iy > |l;|. If we had instead, for instance,
&y > |l,|, we should put 2 = I — I, + A" and rewrite
(A4) in the form

M = o (ypYe o€ p) i mp) T
(1 — cos ) .
—————= (1 4 cos 6)" ", (A5
o Y, (AS)
implying a corresponding modification of (1.14).

(A2)

APPENDIX B: EXPLICIT EXPRESSIONS FOR
THE CANONICAL BASIS AND THE SPIN
EIGENFUNCTIONS AND PROOF OF
THE SUMMATION FORMULA (2.8)

The transition from the continuous variable
z = (z,, z,) to the discrete indices s{ is given by the
expressions of the vectors [s{) = f, (z) of the canonical
basis. We shall present them in a form which exhibits
their relation to the matrix elements of the irreducible
representations of SU(2) and allows automatic sum-

I. T. TODOROV AND R. P. ZAIKOV

mation over the spin projection to be performed [in
particular, to prove (2.8)].

To do this we introduce generalized polar co-
ordinates in the two-dimensional complex space
nutting

21 = ()} cos 1064419, z, = (1)} sin 3pee),

r20, 0<6<7, 0<p<27, 0<ua<4n

(BI)
It is easy to express the generators of SL(2, C)
in terms of these variables. The infinitesimal genera-

tors of the SU(2) subgroup (the “compact generators™)
depend only on the angles

M= i 2

o9’
M, =M 4 iM*?
; 0 i 0 i 9
= ¢ 4 — — ——=]; (B2
( J8 tan0dp sinf 8oc) (B2
the generators of the pure Lorentz transformations
have the form

N = i(rcos@-a———— sinﬁg),

or 06
Ni=Nl:l:iN2=eﬂ"'(irsin0§—+icosﬂ—§—
. or 00
1 0 1 0
_— —1}. (B3
sin 6 dg tanHaoc) (B3)

The canonical basis for any irreducible representation
[ly, i} of SL(2, C) is defined by the set of properly
normalized eigenvectors [s{) of M? and M?® (see
Refs. 4, 7):
M2 |sl) = s(s + D) [s), M®|s)) = {|s]),
S=l10,:ll()|+1’.'.’—SSC£S' (B4)
The conventionally normalized* solution of Egs.
{B4) has the form

Is0) = f9%(2) = A" Do, 6, 9),  (BS)
where
A, = Alm ,
Pl + 1 =P+ 14+ 1)

and D{%, are the matrix elements of the irreducible
representation of SU(2) (corresponding to spins) as
functions of the Euler angles; they can be expressed
in terms of the Jacobi polynomials as

! - ! % i £, -
= [ BB e
0 - .
x (% sin )1 pUIel7 8t 101+ cos ),
& =sgnl={/lLl. (BY)
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Equation (BS5) allows sum rules to be obtained for products of two basic vectors f:

(s)

2 f»ll(z(l))flso; 1(2(2)) = AlollAlo uy lr]rll - Z Dzoc(“u 6, ‘P1)[D(s)(0‘2, B, (Pz)]?zo

{r=s

{=—s

= APAI —lDzﬁf,,’o'(a, 0, @), (B8)
where («, 0, @) are the Euler angles corresponding to the product of rotations («;, 8;, ¢1)(e, N e
cos 6 = cos 6, cos 0, + sin 6, sin 8, cos (g, — @,)
oflate) cos 3(0, — 0,) + i cos 3(0; + 6,) tan $(¢; — o) z(al—ag)
c0s 30, — 0,) — i cos 6, + 0) tan gy — @) (B9)
iamp) __ sin §(6, — 6,) — isin }(6; + 6,) tan (¢, — @) o)

sin (6, — 0,) + isin 3(6; + 6,) tan (¢, — <p2)

Comparing (2.7) with (B8) and (B9), we check (2.8).

APPENDIX C: ASYMPTOTIC BEHAVIOR OF
THE TWO-POINT FUNCTION FOR LARGE
SPACELIKE SEPARATIONS

We shall only outline the derivation of the exponen-
tial decrease of the two-point function (1.15) (in a
theory with a lowest positive mass m,) without going
into mathematical details.

To state the problem properly we have to pass from
the continuous variables z and w to vector variables
f and g belonging to the representation space [the
function F, (x; z, w) is, in general, a distribution of z
and w—it may not be defined for some special values
of these parameters]. Namely, let the field (x, z) be
transforming under the irreducible representation
T = [ly, I}, and let f(z) € D,, where D, is the set of
homogeneous function of degree (1.2), infinitely
differentiable in the whole complex space C, except
the origin. Then, in general, only the linear functional

wx, f) = f £z, Dyle; 23, 1) d2(fe D) (CY)

has a meaning [as an operator-valued distribution in
S(Ry).

In these terms the two-point function can be
written in the following way:

F(p(p'(X;f? g) = <0l ‘P(%x f)QD(—%x, g)* l0>
=2 dtfs(m2)

8= 1o

d®n

x f K (me-sme 40
no—‘(1+l‘l , no

where, in accordance with (2.7),

K(n) = f f Fza)zanio)™

X (2 Za) 0 Wiy mipg)
x P%%o)(cos B)g(wy,) d*z, d*w,,

s~lg

(C2)

(C3)

and zqy = (2,, 1), wyy = (wy, 1) [g, being related to
p, of (2.7)].

Now we put x® =0 and choose the third axis
along x [so that x = (0,0, r), r > 0].

We see from (C3) that, for k sufficiently large,

)

is absolutely integrable. This permits us (after a
repeated integration by parts with respect to n; and
a subsequent integration in », and n,) to rewrite (C2)
in the form

F,,+(0,0,0,7;f, 8)
_ J‘” do(m?)
s 19 d mp? (rm)*

F(ny) =J‘J ::3(110 K (n)) dny dn,.

From the explicit expression of K, (C3), we see that
F(n,) is analytic in the strip

"‘1<n3<l

and may have a power-type singularity for n; = i,
which we shall write in the form

Clins + iy*+**

(4 being real). This permits shifting the contour of
integration in (C4) to n; = i 4+ »; we finally obtain

F¢¢'(01 0, 0’ r,,fy g)
— rle—-morf —(m—mo)er(m2) das(m2), (CS)

dngF (ng)e™™" (C4)

with

where G, is acontinuous polynomially bounded func-
tion of m?. This proves that, apart from a power of r,
the two-point function decreases like e~™o" for large
spacelike separations r.
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A perturbation method given in a previous paper of this series is applied to two physical examples, the
electron plasma wave and a nonlinear Kiein-Gordon equation. In these systems, and probably in most
physical systems, an assumed condition for a mode of / = 0 is not valid. Consequently, the direct applica-
tion of the method is impossible. In the present paper, we shall illustrate by these examples how this
difficulty can be overcome to allow us to use the method. As a result we shall find that, in either case, the
original equation can be reduced to the nonlinear Schrodinger equation.

1. INTRODUCTION

In a previous paper® of this series, we formulated a
perturbation method to account for a modulation of
plane waves due to nonlinear self-interactions. A
system of equations, which we considered, was

Wi a2+ 8wy =0,

ot ox
for a column vector U with n components, where the
n X n matrix A and the column vector B are, in
general, vector-valued functions of U, see Eq. (I.1).
[(I.1) denotes Eq. (1) in 1. In what follows, this nota-
tion will be used for any equations in 1.] First, the
system was linearized about a constant solution U,
to characterize the plane waves by means of the dis-
persion relation [Eq. (1.4)}:

det W, = |Fiol £ ikA, + VB, = 0.

Then, for the matrices W, (! =0, £2, +3, ), we
assumed that [Eq. (I1.4%]:

det W, %0, |I| 1.

However, as was noted at the end of I, in physical
problems the condition is not, in general, valid for
I = 0. Consequently, the method cannot be applied
directly. In the present paper, we show by examples
that, nevertheless, the method is still applicable to such
systems.

The first example given in the next section is the
electron plasma wave in a background of fixed ions,
in which case the use of Poisson’s equation as a
subsidiary condition enables us to determine succes-
sively the components of /=0, ie., Uy®'s of Eq.
(1.5). For other modes of / # 0, one can follow the
process of I. We are thus able to exhibit a reduction

1T, Taniuti and N. Yajima, J. Math. Phys. 10, 1369 (1969). This
paper will be referred to as 1.

of the original system of equations to a single tractable
nonlinear equation. The equation is the nonlinear
Schrodinger equation (1.16), which admits a further
reduction to the Kortweg-de Vries equation. Special
solutions in the lowest order of perturbation will be
given in explicit forms.

In Sec. 3 a nonlinear Klein-Gordon equation is
discussed as an example. Transformation of the
second-order equation into the matrix form (L.1) is
straightforward but shows that det W also vanishes.
The difficulty can be overcome in a way similar to that
for the electron plasma wave, and, furthermore, the
original equation is reduced to a nonlinear Schro-
dinger equation.

2. ELECTRON PLASMA WAVE

The equations governing the one-dimensional
motion of an isothermal electron fluid without dis-
sipation? are the continuity equation

on on du
— - —=0 la
PRI VRIS (12)
and the momentum balance-equation
du ou kT, 0n e
2 uZ ey S E=o 1b
ot ! 0x  mno0x + m (10)

Here, n and u are the density and the flow velocity,
respectively, m and e are the electron mass and charge,
respectively, « is the Boltzmann constant, T, is the
constant temperature, and E denotes the longitudinal
component of the electric field. The hydrodynamic
equations (la), (1b) are coupled with Poisson’s
equation

oF (10)

= 4me(ny — n),

2 L. Spitzer, Physics of Fully Ionized Gases (Interscience Publishers,
Inc., New York, 1962), Sec. 3.
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where n, is a constant density of fixed ions. Equations
(1a)-(Ic) constitute a complete set of equations which
determine n, u, and E. However, in order to work with
the system of equations written in the form of (I.1),
we consider, instead of Eq. (Ic), the longitudinal com-
ponent of the first Maxwell equation,

oE

— — 4menu = 0.
ot
Then Eqgs. (1a) and (1d) imply that Poisson’s equation
(Ic) perpetuates if it is valid initially. Consequently, it
may be considered as a subsidiary condition. Thus,
we have the system of equations [Eq. (I.1)]:

(1d)

N +4 E + B =0,
with the representations
o
U=|ul, (2a)
E
u n 0
A=|«T,/mn u 0}, (2b)
. 0 0 u
0
B =\ (e/mE (2c)
—4mengu

A constant solution U'®, about which the expansion
(5.1) is considered, may be taken as

ny
U =|¢g|. 3)
0

Then the matrix W,, ie., —iwll + ikidy + VB,,
becomes

—ilw ilkn, 0
ilka®*ny, —ilo e/m (42)
0 —4meny, -—ilw
and det W, = 0 yields the dispersion relation
w® = wd + o’ (4b)

where w, is the plasma frequency (47n,e?/m)t and a the
thermal velocity («7,/m)t. Thus, the vectors R and L
introduced through Eqs. (9) and (1.9’) are

1
R=| ofkn, |, (52)
idmefk
L = (a*/n,, ok, —ie/mk). (5b)

2021

Computations of the coefficients « and f§ given by
Eq. (1.14) are straightforward, and we have

® = 20%/ngk?, (6a)
B = —iwga®/wk®n,. (6b)

Since det W, does not vanish for any / except 0 and
41, one can directly calculate R{» of Eq. (I.15a):

40® + 2w}
o o(40® — wd)ingk |. @)
" \idme(20? + )k

However, det W, obviously vanishes; hence, Ug” and,
consequently, R can not be given by Eq. (I.15b),
and the method of solution of I is not directly applic-
able. In the subsequent discussions, we show that by
means of the subsidiary condition (lc), the difficulty is
overcome and the U{*’s are determined successively.
First, we note that for / = 0, the left-hand side of Eq.
(I¢) is

R(22) —

€(OEY [08) + E(0EP[08) + - - -
Hence, one has immediately that

=0,

whence Eq. (I.7a) for I = 0 (i.e., W,U® = 0) yields
u(()l) = E'()l) = 0,

and, consequently,

oY = 0. (8)
Substituting Eq. (8) in Eq. (Ic), we find that

@ _
nyg =0

On the other hand, for I = 0, Eq. (I.7b) becomes
WoUS? + ik[(VA, - R¥)R — (VA, - R)R*] |4V]? = 0.
It is easy to see that this equation determines all the

components of U except n{¥. After elementary
calculations we thus obtain

0
. —2w
U = —— (1] 16" (9a)
nok
0
or
5 0
RP = =2 (9b)
ngk 0

In this way, we can proceed to any desired order in e.

Substituting Eqs. (7) and (9b) in Eq. (I.14c),

y = ia*w(8w? + wd)/3ndwd, (10)
and we finally obtain Eq. (1.16):
0 9% e 4w
—_ —_— =0 (11
vl a§2+ql¢l¢ (11a)
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Here p and g are given by the equations
(11b)

q=y[le| = (11c)
Special solutions can be found easily. Assume, for
#'V, the form
¢ = f(&) exp (—ivr),

where ¥ is a positive constant.
Let f be a real function of £. Then one has

af |

d&

in which # and 7 are equal to ¥/p and ¢/p, respectively,
e.g.,

P = fllel = wga®20°,
— K2} (80® + wp)[6niww;.

(12)

+ i+ 97 =0,

(13a)
(13b)

7 = 20%[(wea)?,

7 = —0’k*(8w? + wi)/3niw;.
Hence, in this case, the system is equivalent to the
motion of a mass point under the potential

Vi) = f* + i

Figure 1 shows that the motion is oscillatory for
amplitudes below the critical amplitude (—#/7)? =
(—v/q)}, for which f becomes

f = (—v/g)* tanh [(v/2p)EE]. (15)

If fis complex valued, we have the plane wave
(1.18), i.e., Eq. (11a) is satisfied by

f = ¢yexp (isé),
provided s is given by

(14)

(16a)

v=ps’ — qd;. (16b)

Since pg < 0, as was shown in Eq. (1.20) below, the
plane waves are stable for modulation, and Eq. (11a)
can be reduced, in an asymptotic sense, to the

v

|
]
|
=
o
T
SR [T -
N
-
—tn

Fic. 1. Potential curve.
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Kortweg-de Vries equation. That is, consider the
solution of the form (1.19)

g a1 24
2p

to obtain the system of equations [(I.20a) and (1.20b)]
for p and o:

an

a_p+ ap aa

or 85 35
do oo dp

2_6_{(1*9_ (1*@ _o
ar | B ot 8¢ p) as[ p) as]}—'

=0,

—+ o —2pq—

Here, we note that Egs. (1.20) admit the solitary wave;
namely, under the boundary condition for & — co,

P = Pos
o=a*—o0,,

0un >0,
one has

o=a* —0,{l — (1 — M?

x sech? [(@*/2p)(1 — MH¥(& — a*n)]}1, (18a)
p = po— po(l — M?)
x sech? [(a*/2p)(1 — M?}(& — a*7)], (18b)

where a* is the effective sound velocity equal to
(—2pgpy)*, whence M is the Mach number o, /a*,
which is less than unity in order that the solitary wave
exist. Then an expansion in terms of a small param-

eter u (> 0),

p=pot pps+ @pzt -,
0= poy + o+,

yields the Kortweg-de Vries equation for p; and o :

P &

oo, 3 801 a1, {00y

e D (T9) =0, (19

or’ + 2 ' o (85’) 2a* 0£° (192)
p1 = (po/a*)(oy — 015)s (19b)

in which &' and 7’ are stretched coordinates defined as
£ = (€ — a*r),
v = ubr.

We have assumed ¢, — 014 > 0, p; =0 for £ — 0.
From Eq. (19a), we get the solitary wave

— 20,4 - sech? [%(2ama*/p2)‘1’§’] (20)

01 = 01

which, of course, also results from Eq. (18a) if we
put M2=1—2u and 0, = 01, . Substituting Eq.
(20) in Eq. (17) gives

¢V =~ p¥(1 + o/2a%)[exp (<iv7)]
x exp {io,[& — (2/6) tanh &(& — a*r)]}. (21)
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Here, o and o, stand for u(s, — 0y,) and uo,.,
respectively, and 6 designates 10 a*u/p®?t, where
vis —qp,.
3. NONLINEAR KLEIN-GORDON EQUATION
Consider the nonlinear Klein-Gordon equation®
for a real scalar function y:
Py oy
o ox®
where m and « are real constants. Introducing y and
¢ by the equations

+ m*y + ky® =0, (22)

dy
-, 23
A (23a)
% _ 0, (23b)

and differentiating Eq. (23a) with respect to ¢, we can
bring Eq. (22) into the matrix form (1.1):

Y + A oy +B=0 (24)
ot 0x
Here, U, A4, and B take the forms
¢
U=1{7z21] (25a)
Y
0 -1 0
A=]-1 0 0}, (25b)
0 00
m2yp 4 kyd
B = 0 (25¢)
—¢

In what follows, Eq. (23a) will be regarded as a
subsidiary condition which perpetuates if it is valid
initially. We now assume the expansion (1.5) about
the constant solution

Uy=0.

Then the matrices W, are expressed by

—ilo  —ilk  m?
W,=|—-ilk —iloe 0 (26)
-1 0 —ilw
The dispersion relation det W, = 0 becomes
0 =k —m?=0, @2n

3 L. I. Schiff, Phys. Rev. 84, 1 (1951); W. Thirring, Z. Natur-
forsch. 7a, 63 (1952).
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which implies
det W, # 0,

unless |/| is zero or unity. Hence, the U®, except UV,
are given by Eqgs. (1.8), i.e.,

U =0, for {l}>2,
U(ll) = ¢(1)R’

(28a)
(28b)

where R is the column vector introduced in Eq. (1.9)
and takes the form

(29a)

The corresponding row vector L may be given by

L = (w, —k, —im?). (29b)

Since det W, vanishes also in this example, a different
method is required to account for U{*. Consider the
component / = 0 of Eq. (24). For the first order in
€, it yields

¢ =y’ = 0;

hence, the subsidiary condition (23a) yields
20 =0
and, consequently, we have

UV =0. (28¢c)

Similarly, by substituting Eqs. (28a) and (28c) in Egs.
(24) and (23a), for the second order in ¢ we have

U® = 0. (30a)

Computations of the U (I # 0) are straightforward:
Since

VAy=VVA4, = VVB, =0,
we find from Eqs. (12¢), (12d), and (15a) that

UP = U =R =0, (30b)
and solving Eq. (1.10) for U/? yields
—kjow
. aqs(l)
UP =¢®PR+i| 1 . (30c)
0 ot

Introducing Egs. (29) and (30) into Eqs. (I.14) yields

o = 202, (31a)
B = —im?|w, (31b)
y = 3iwk. (31¢)
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Hence, we have Eq. (1.16):

ASANO, TANIUTI, AND YAJIMA

For a negative «, pq is positive so that this equation
admits the solitary-wave solution, such as that given

i &éﬂ +p22 32¢’m g l1d™E ¢ = by Eq. (1.17), while the plane waves are modulationally
or &2 unstable as was stated before in Eq. (I.18). On the
with other hand, if « is positive, we have the solutions such
p = m20?, as those given in Sec. 2 for the plasma wave, and the
equation can be reduced to the Kortweg-de Vries
g = —3k2w. equation.
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Certain matrix transformations of the free-particle Dirac equation are described as momentum-
dependent SO(4, 1) transformations. Such of these belonging to any one of five subgroups G(® (a =
0, 1, 2, 3, 4) are canonical, preserving the Lorentz-invariant Dirac scalar product in a corresponding one
of five modes of expression. The Dirac equation itself is linear in all five components p, [p, (4« = 0, 1,2, 3)
is the four-momentum operator, and p, = m] of the “five-vector” p, and a transformation in G'#’ has the
additional property that the component p; appears linearly also in the transformed equation. The
Mendlowitz and the Foldy- Wouthuysen—Tanl transformation accordingly are in G, the SO(4) sub-
group; and that proposed by Chakrabarti is in G'*), the SO(3, 1) subgroup associated with homo-
geneous Lorentz transformations. For any p’, obtained from p by a momentum-dependent SO(4, 1)
transformation, there is a corresponding transform of the Dirac equation. Where p, appears in the Dirac
equation, p, appears in the transformed equation. The ambiguities which arise in the specification of the
transformatlon leading to a given such equation are associated with the existence of a “little group” for

any such p’.

1. INTRODUCTION

The Dirac equation for the four-component wave-
function p?'(x) is

(yp* — myyp'? =0, (L.1)
where
~9 0123 (1.2)
p[,t_axus /t—,,,, .

and the matrices y, form an irreducible representation
of the Dirac~Clifford algebra, with

Wi Vo = 2840 (1.3)

[We choose the diagonal metric with gog = —gy; =
—gy2 = —gss = 1; and, with no significant loss of
generality, we take yo, iy, iys, iys, and iy,
(= iyey1Ys2ys) to be Hermitian.]

The transformation properties of the bispinor
function ‘P’(x) with respect to the restricted homo-
geneous Lorentz group SO(3,1) are well known.
However, it has also been long known that larger
groups, in fact certain groups of rotations in five- and
six-dimensional spaces, are pertinent to discussions of

the Dirac equation, the Lie algebra of the Dirac
matrices y,, etc.’~7 In this paper, the connection
between Eq. (1.1) and the group SO(4, 1) in particular
is exploited in the development of a unifying group-
theoretical description of certain canonical momentum-
dependent transformations of the equation.

In a previous publication,® henceforth referred to as
BC, two features of Eq. (1.1) assume significance:
namely, the linearity in all five of the quantities p, , m,
and the existence of five different ways of expressing
one and the same Lorentz-invariant scalar product

L A. S. Eddington, Proc. Roy. Soc. (London) 121A, 524 (1928).

2 P. A. M. Dirac, Ann. Math. 36, 657 (1935).

3 Harish-Chandra, Proc. Indian Acad. Sci. 224, 30 (1945).

4 A. O. Barut, Phys. Rev. 135, B839 (1964). See also A. J.
MacFarlane, Commun. Math. Phys. 2, 133 (1966); A. ten Kate, J.
Math. Phys. 9, 181 (1968).

5 J. K. Lubafski, Physica 9, 310 (1942). See also H. J. Bhabha,
Rev. Mod. Phys. 17, 200 (1945); J. A. de Vos and J. Hilgevoord,
Nucl. Phys. BI, 494 (1967); M. M. Bakri, J. Math. Phys. 10, 298
(1969).

¢ See, for example, C. Fronsdal, Proc. Roy. Soc. (London) 288A,
113 (1965), and references given therein.

7 A. O. Barut, Phys. Rev. Letters 20, 893 (1968).

8 A. J. Bracken and H. A. Cohen, Progr. Theoret. Phys. 41, 816
(1969).
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@2, pP) of any two solutions ;2)(x). The five
expressions are all simple in the momentum repre-
sentation, introduced by defining

V’(D)(x X) — (277,)—% dak eik-x{ e—iw(k,m)zox(DH(k)
o w(k, m)
+e+iw(k,m)a:ox(D)—(k)}’ (14)
where
w(k, m) = (k* + m?)}, (1.5)

and with, conversely,
2 PH(k) = ey ok, m) £ po)(2m) !
X J Pre ' Px, x). (L.6)

(D1

Then the well-known coordinate representation form
d*xp” (%o, X)'P(D)(xcn X),

(w(D) (2D)) =f
29 const
1.7

where ' is the Hermitian conjugate of ¢'?’, yields
the five expressions

(wu))’ WD)
— d k { (D)+T(k) (D)+(k) + (D)— T(k) (D)—(k)}
= wz(k, m) 74 Y41 /4
(1.8a)
- d’k (D) (Lo D)+ ZAD=(Kk)y P~
= {117 (K)yz"" (k) — K)ys”~(k)}
maw(k, m)
(1.8b)
and
d’k (D) D+
_ K)y; k
otk Ok, {2 Wy (k)
— 1P Kyas™ (k)
(i = 1, 2, or 3; no summation); (1.8¢c)
where
—(D):l: X(D)tf (1.9)

The equivalence of these five expressions is established
using the identity

TPEK) (k) = mpPEK)y, 12 5(K),  (1.10)
where we define
koK) = olk, myP=k).  (L11)

Equation (1.10) in turn follows® from the fact that one

® The proof is a simple extension of that for the case x‘”’i

x"’)i as given, for example, in S. S. Schweber, An Introduction to
Relativistic Quantum Field Theory (Row Peterson & Company, New
York, 1961), Chap. 4, preceding equation (129).
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has, from (1.1) and (1.6),
(P k* — m)ypiB* =0. (1.12)

In BC we considered momentum-dependent matrix
transformations of the form

yP(x) > y'(x) = V(p, myp'P(x),  (1.13)
leading to the equation
V(p, myp* — mlV7(p, m)y’ = 0. (1.14)

Five special classes of such transformations were
presented, with every transformation in a given class
having two properties characteristic of that class.

The first of these properties is that the linearity in a
corresponding one of the five quantities p,, m is
maintained in the transformed equation. In this way
“Poms “P1=y “Pors Py, and “m-linear” equations are
obtained.

Amongst the “pg-linear” forms,
Foldy-Wouthuysen-Tani'® equation

one finds the

Py’ = yo0(p, myp'™, (1.15)
with, in this case,
y(x) = F(p, m)ypP(x), (1.16)

where
F(p, m) = exp [Y_p arc tan (lpl)}. (1.17)
2|pl m

Also of the “py-linear” type is the equation proposed
by Mendlowitz!!:

= o(p, m)yo—— p'M (1.18)

ol

M(p, m)y'P(x),

Po'lJ

where
. pI0(x) = (1.19)
with

2 1pl

Amongst the “m-linear” equations is that proposed
by Chakrabarti!?:

M(p, m) = exp l:— Y'Prctan (lﬁpl)} (1.20)

(PP P Yoy’ = my'@ (1.21)
where
(po) = Po pol™ (1.22)
and
' O%x) = Cp)p'P(x), (1.23)

10 1. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950);
S. Tani, Progr. Theoret. Phys. (Kyoto) 6,267 (1951). The transforma-
tion was in fact earlier proposed by M. H. L. Pryce, Proc. Roy. Soc.
(London) 195A, 62 (1948).

11 H. Mendlowitz, Phys. Rev. 102, 527 (1956). The transformation
was rediscovered by M. Cini and B. Touschek, Nuovo Cimento 7,
422 (1958); and independently by S. K. Bose, A. Gamba, and E. C.
G. Sudarshan, Phys. Rev. 113, 1661 (1959).

12 A. Chakrabarti, J. Math. Phys. 4, 1215, 1223 (1963).
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with
C(p) = exp{— €—(B‘))y—w—.—parc tanh (M)} (1.24)
2 |p| | Pol

The simplest “p;-linear’” form obtained is

pav’ = e(Po)MPy, P1s P2, MYy,  (1.25)

where

APos> Prs P2s m) = [(p) — (P)* — (p)* — m¥?

(1.26)
and

W’(x) = W(pﬂa pl ’ Pz s m)w(D)(x): (127)

with
W(po, p1» P2, M)
= ex {_ e(po)yolyiP1 + YobDs + m)
20(p)° + (po)* + m*Tt
[(P)* + (p)* + m ]2)}' (1.28)
| Pol

X arc tanh (

The second property characterizing a given one of
the five classes is that every transformation within that
class preserves the Dirac scalar product in a corre-
sponding one of the five modes (1.8a)-(1.8¢c), so that
each class consists of canonical transformations. In
fact, the transformations leading to “py-, “m-, and
“p-linear” forms preserve the modes (1.8a)-(1.8¢c),
respectively.

In describing a subset of transformations (1.13)
as momentum-dependent SO(4, 1) transformations,
making use of the connection between Eq. (1.1) and this
group, we aim here in particular to interpret the above
results of BC in group-theoretical terms. To this end,
in Sec. 2, we make explicit this connection to the
extent required in what follows.

In Sec. 3, the significance of such a connection in
regard to transformations of the form (1.13) is
established. We stress in particular the existence of
five subgroups of SO(4, 1), labeled by us G (a =
0, 1, 2, 3, 4), which have the special property that any
momentum-dependent transformation (1.13) within
a given G'* leaves the equation linear in the corre-
sponding p, (where we write p, = m).

As might be expected, the five classes of canonical
transformations presented in BC fall into these five
subgroups and, in fact, every transformation in a
given G'® also preserves the corresponding mode of the
scalar product. This we show in Secs. 4, 5, and 6,
where the subgroups G, G'¥, and G'? (as typical of
G, i =1, 2, 3) and, correspondingly, “p,-, “m-, and
“pg-linear” forms of the equation, are discussed in
more detail. [It is not shown that an arbitrary momen-

A. }J. BRACKEN AND H. A. COHEN

tum-dependent SO(4, 1) transformation is canonical—
In fact it is not possible to write the scalar product
(1.8a)-(1.8c) in SO(4, 1)-invariant form.]

We find that G is the maximal compact subgroup
SO(4), and G¥ the SO(3, 1) group relating to the
Lorentz transformation properties of the equation.
The G are also SO(3, 1) subgroups, distinct from
G and from one another.

In Sec. 7, a discussion is given of the “little group”
of SO(4, 1) transformations which leave a particular
transform of the equation invariant, and the nature of
ambiguities which arise when one wishes to transform
one equation into another are made explicit.

2. DIRAC EQUATION AND S04, 1)

The sixteen elements

Lyysvs, Vsvus and [y, p,] (2.1)

of the Dirac-Clifford algebra form a complete set of
4 X 4 matrices, in terms of which the infinitesimal
generators of a four-dimensional representation of any
Lie group can be expressed as linear combinations
with complex coefficients.

In this connection, one is familiar with the case of
SO(3, 1), where the generators are defined as

Su = ({UDu, 1] 22)

and satisfy the characteristic Lorentz-group com-
mutation rules

[Suv> Spal = —(84pSss + 8voSus
- gllaSVP - ngSua)' (2-3)

The significance of these operators in regard to the
Dirac equation is well known. In essence, the invari-
ance of the Dirac description of free spin-} particles
under restricted homogeneous Lorentz transformations
is expressed in the fact that

[VuP* J el = 0, (2.4)

where

Jow=L, + S, (2.5)

and the L,,, satisfying commutation rules analogous
to (2.3), are defined by

L,,=x,p, — x,p,. (2.6)

Although not always referred to as such explicitly,
representations of the Lie algebras of larger groups,
such as SO(4,1) and SO(4, 2), have been given in
terms of (2.1) by, for example, Eddington,! Dirac,?

12 We have taken some license with notation in referring to the
groups SO(3, 1), SO(4), and SO(4, 1), when in fact the covering
groups SL(2, C), SU(2) ® SU(Q2), etc., are meant.
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Harish-Chandra,® and Barut.? The connection between
the orthogonal groups in five dimensions [such as
SO(4, 1)] and a class of relativistic wave equations,
of which the Dirac equation is the simplest, was first
discussed in detail by Lubanski> More recently
SU(4) [of which SO(4,2) may be regarded as a
type] has received attention from several authors®;
and Barut,” in particular, has exploited the connection
between Eq. (1.1) and SO(4, 2) in “reformulating the
Dirac theory of the electron.”

For our purposes here it will be sufficient to indicate
and use the relationship of the group SO(4, 1) to the
Dirac equation. Multiplying (1.1) by y;, one obtains

(ysyup" — ysm)p'? = 0. @7
Defining
F,,:')’s'}’,“ P4='}J53 (28)
and
pt=—m, (2.9)
one can write (2.7) as
TP =0, (2.10)

where the summation is now over « = 0, 1, 2, 3, and
4. In the following, note that indices take these values:
a, B,y,0,€0,1,2,3,4,
B> v, p,0:0,1,2,3,
T, Ca 77:0’ 1’ 2; 49
a,b,c:1,2,3,4,
I k:1,2,3.
Introducing g (= g,,), with

o= —8u= —8u= —fFun=—gu=1,

8 =0, as#f, 2.1
we define I'* = g*T';, etc. Now defining also
T = (i/9)(T,, T'y] (2.12)
and noting
{Ta, Uy} = 2g,,, (2.13)
we find

[Taﬂ3 Ty&] = _—i(gayTﬂﬁ + gﬂdTav
- gaéTﬂy - gﬂyTad)’ (214)

which are the characteristic commutation rules for the
Lie algebra of SO(4, 1). Since this group is non-
compact, the 7,, are not all Hermitian, but

ToT!, = T,T. (2.15)

One also has

[Fas Tﬂy] = i(gaﬂrv - gayPﬁ)- (2'16)
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Note that the ten different 7,, consist of the six
different 7,, [=S,, of (2.2)] and four T,,
= —(i/2)y,], so that this Lie algebra is as small as
any containing scalar multiples of all four Dirac
matrices 7, .* The representation of SO(4, 1) generated
by these ten operators is irreducible. The Casimir
operators** ~4T,,T* and —w,0*, where

0, = beugp THTH (2.17)

(= §I', in this case), are multiples of the unit matrix
by —% and —1%, respectively.

It is worth mentioning that there are two inequiv-
alent irreducible representations of the Clifford
algebra defined by (2.13), both of four dimensions.
By making the choice (2.8) for I',, we fix on one of
these. The other representation is obtained if one
chooses instead

L, =y, Ti=—yp; (2.18)

(and so necessarily p* = m). The set of T,; one obtains
in this case is then also different, again with

Ty = ({By, vl (2.19)
but now

Ty, = +32)y,. (2.20)

However, these T, generate an equivalent representa-
tion of SO(4, 1). (The invariants take the same values.)
This is clear from the fact that this second set of Ty
is obtained from the first set via the substitution
Yu—> —V,. However, this can be achieved by a
similarity transformation, because, under this sub-
stitution, a different set of matrices satisfying (1.3)
is obtained and, as is well known, all irreducible
representations of the Dirac-Clifford algebra are
equivalent.

3. §0(4, 1) TRANSFORMATIONS OF THE
EQUATION

When written in the form (2.10), the Dirac equation
has an SO(4, 1)-invariant appearance. One might hope
to find operators M,, satisfying commutation rules
analogous to (2.14), and such that 5 transforms?® as a
five-vector operator with respect to transformations
generated by them, that is, such that [cf. (2.16)]

3.1

One would then have, ensuring SO(4, 1) invariance,

[Papa’ Kﬂ;r] = Oa (3'2)

!4 See, for example, T. D. Newton, Ann. Math. 51, 730 (1950).

15 We introduce at this point the notation p for the object with
components pg , distinguishing it from the four- and three-vector
operators p and p, respectively.

(P> Mﬁv] = i(g“ﬂpv - g"'YPﬁ)'
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with

Kyy = My, + Tpys (3.3)

however, such M#" (and K#Y) cannot be found, as is
clear from (3.1) and the fact that p, is a constant.
Nevertheless, one can consider the effect of trans-
formations generated by all ten T, on the equation.
Furthermore, despite the above conclusions, we shall
see that it is in some ways convenient to regard j as a
five-vector quantity and, similarly,

PP = (p)® — (p)° — (p2)* — (ps)> — m* (3.4)

as an SO(4, 1) scalar.

Consider the SO(4, 1) transformation
I, —T, = LT, [= (LD),], (3.5

where L’ are real and satisfy

Lig¥L? = gP, (3.6)
Ly> 1, 3.7
and
det L = 1. (3.8)
Then one can write
I, =Qr,0™, (3.9)
where
0 = exp [(i/2)0w* T, (3.10)
with the w* (= —w?f?) real quantities determined by

the L. [The converse result aiso holds: (3.9) and
(3.10) = (3.5)—(3.8).] Defining

¥'(x) = QypP(x), (3.11
one obtains from (2.10) and (3.9) the equation
(LD)py" =0 (3.12)
or, equivalently [using (3.6)],
L (L'p)yy = 0. (3.12)

Thus this transformed equation is obtained from (2.10)
by replacing therein the “five-vector” p with its
transform under the SO(4, 1) transformation inverse
to the L of (3.5) [at the same time replacing »'P’ by
y’ as in (3.11)]. Conversely, if 5’ is obtained from p
by some arbitrary SO(4, 1) transformation, then the
equation

Ly’ =0 (3.13)
can be obtained from (2.10) by defining " as in (3.11)
with appropriate coefficients «*# determining Q.
Furthermore, since the p, behave like real numbers to
the extent that they commute with one another and
with all I'y, and have only real eigenvalues on the
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functions under consideration, a generalization to
allow »** to be (Hermitian) functions of j is possible.

To summarize: The possible forms (3.13) of Dirac’s
equation, obtained from (2.10) via transformations of
the form (3.11), with 0* = w*(), are determined by
the possible transforms ' of g,

p. = Lip,, (3.14)

where Lf are (Hermitian) functions of j satisfying
(3.6-3.8). For all such transformations,

1o ra

pp"* = pp* = pp* — m?, (3.15)

and
€(po) = €(po)- (3.16)

At this point we note that knowledge of p’ is not
sufficient to uniquely determine the transformation
L? of (3.14), as for any p’ there is a “little group” of
such transformations which leave it invariant. Corre-
spondingly, there are transformations of the form
(3.10), which, on application to a solution of a given
equation (3.13), produce a further solution of the
same equation. A further discussion of these questions
is given in Sec. 7.

As mentioned in the Introduction, there are five
subgroups, which we label G'*, of SO(4, 1), having
particular significance when the question is raised of
the canonicality of transformations of the form (3.11).
G'*) is that subgroup consisting of all SO(4, 1) trans-
formations which leave invariant arbitrary five-vectors
whose only nonzero component is the «th. Since every
component of the “five-vector”” j appears linearly in
(2.10), it follows that if p’ is obtained from j by an
SO(4, 1) transformation (3.14) in G'#, the 8 com-
ponent of j appears linearly also in (3.13), which we
then refer to as “a ‘py-linear’ form of the Dirac
equation.”

4. G'9 AND “p,-LINEAR” FORMS

The subgroup G [the maximal compact subgroup
SO(4)] acts only on the indices 1, 2, 3, and 4. The
corresponding generators are T,,,, which are Hermitian
matrices, and they in fact generate two inequivalent
unitary irreducible representations of SO(4), labeled
by the two eigenvalues 41 of Iy (= ysv,), which is
effectively a Casimir operator for this subgroup.
(Note [I'y, T,,] = 0.) Under the associated trans-
formations (3.14), p, and p, p* [= —w?(p, m)] remain
separately invariant.

Thus, from

,5=(P0,P1’P2,P3,m) (4'1)
via G'® transformations, one can obtain
ﬁ’ = (pOa p]i H pé5 p:;s p;)’ (42)
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where the p,(p,) are Hermitian and
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PoP (4.3)
The corresponding equation (3.13) is in each case

(Top® + Tap™)y’ = 0, (4.4)
which gives, on multiplication with T'y, the general
“py-linear”” form

po¥’ = vo(y1P1 + ¥2Ps + vsPs + PV

In considering the canonicality of momentum-
dependent transformations in G'®, we note that
when

= — w2(p, m).

(4.4)

pP(x) > Q(p, my P (x), (4.5)

where Q(p, m) is as in (3.10) [with 0® = w*(p)],
one has, from (1.6),

2 PHK) — Q(k, m)y' P*(k). (4.6)

Furthermore, when in particular Q is in G*?, it follows
from the Hermiticity of T, that Q(k, m) is a unitary
matrix. Every such transformation is therefore canoni-
cal, preserving the scalar product in the mode (1.8a).

All transformations presented in BC and yielding
“py-linear” forms are of G'* type. For example, in the
simple cases of the Foldy-Wouthuysen-Tani equation,
which corresponds to

ﬁl = (Po ’ O’ 0’ 0’ w(ps m))’ (47)
and the Mendlowitz equation, which corresponds to

p = (po,w(p, m) 1’w(p, m) w(rl;|m)p3’0)’

Ipl Ipl
(4.8)

one sees that the corresponding transformations
(1.17), (1.20) are indeed of the form

exp [(i/2)w™ Ty},

with the *® [= w*®(p,)] Hermitian. They are, in fact,
the SO(4, 1) transformations (3.10) corresponding to
the “little group rotation-free” (l.g.r.f.) transforma-
tions 5 — p’ in the two cases. More generally, corre-
sponding to

2

(4.9)

P = (po, £rqy, £rq,, £rqs, £rq,), (4.10)
where the ¢,(p,) are Hermitian,
r= w(pa m)[_qaqa]_-%, (411)
and
4.(p* — 49 =0, (4.12)
from (4.4’) one has
pov’ = £, M—4.8' (g1 + 742
+ Vags + %)'P’, (4.13)
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which is the general “py-linear” form obtained in BC.
[There are the §’ as in (4.2) which cannot be expressed
in the manner of (4.10)-(4.12), viz., those for which
p.p* = 0. The corresponding transformations and
equations were not obtained in BC.] Again, the trans-
formation presented in BC and yielding (4.13)
corresponds to the Lg.r.f. transformation of p into j’
as in (4.10).

The angles appearing in (1.17) and (1.20) can be
regarded as those between the Euclidean ‘“‘four
vectors” p, and p, through which one rotates to obtain
P. in each case. [The idea of looking upon the Foldy-
Wouthuysen-Tani and Mendlowitz transformations
as rotations is not new,!¢ nor is the use of the group
G in discussing them: it is evident in the work of
Bollini and Giambiagi,)” who have not, however,
noted the connection with SO(4, 1).]

5. G4 AND “m-LINEAR’’ FORMS

G" is the SO(3, 1) group associated with homoge-
neous Lorentz transformations. Thus momentum-
dependent SO(4, 1) transformations (3.14) in G@¥
leave p, (= m), p,p*, and also e(p,) separately invar-
iant. The associated generators T,, are not all Her-
mitian, but satisfy

T;v = F0P4Tqu0F4 (= Yol o) (5.1

and, as is well known, they generate two inequivalent

irreducible representations of SO(3, 1), labeled by the

two eigenvalues +i of I'y (= y;) (cf. the case of G©).
From

P = (po» P15 P25 P3, M), (5.2)
via G transformations, one can obtain
P = (pg> 1, P2» Pz, M), (5.3)
where the p,(p,) are Hermitian,
. p.p* = pp’, (5.4)
and
€(po) = €(po)- (5.5)
In each case, Eq. (3.13) is
(I'yp™ — Tam)y’ =0, (5.6)
yielding the general “m-linear”” form
my' = y,py'. (5.6")

It should be mentioned at this point that, because
of the way it is obtained, p, will not, in general,

18 See, for example, K. M. Case, Phys. Rev. 95, 1323 (1954).

17 C. G. Bollini and J. J. Giambiagi, Nuovo Cimento 21, 107
(1961). See also Ref. 19. Note added in proof: Since the preparation
of this paper, E. de Vries [Physica 43, 45 (1969)] has independently
established this connection.
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be a Lorentz four-vector operator like p,. Our nota-
tion is perhaps misleading in this regard: p is better
regarded as a numerical five-vector than a five-vector
operator for the purposes of this paper.

Each momentum-dependent transformation in G
is also canonical, This follows from the fact that (5.1)
implies that the corresponding Q(k, m) of (4.6) satisfies

Q7Y (k, m) = y,Q'(k, myy,, (5.7)

so that the scalar product in the mode (1.8b) is
preserved in every case.

Every transformation presented in BC and leading
to an “m-linear” equation is of G type (again
corresponding to the lL.g.r.f. transformation of j into
7’ in each case). Thus, for example, in the Chakra-
barti case, where

P = (e(po)(p,p"t 0, 0,0, m),
the Lg.r.f. transformation (1.24) is indeed of the form
exp {(i/2)w*'T,,}. (5.9)

In fact, all p’ of the form (5.3) can be written as

(5.8)

[3, = (rqO’ rq,, r4z, qs, m), (510)
with ¢,(p,) Hermitian, ¢,4* positive-definite,
r=(p" a0, (5.11)
and
9.p" — ¢") = 0. (5.12)

[Proof: Take q, = p,p*(p,p*)"'p,, noting that p, p* is
positive-definite because of (5.5).] Then (5.6") becomes

my’ = (0,04 a,0") 0%, (5.13)

which is the general “m-linear”” form presented in BC.

Whereas in the case of the compact subgroup G

one can talk of an “angle of rotation” for each trans-

formation, here one typically has pseudoangles

associated with the anti-Hermitian T, generators of
“boosts” rather than rotations [cf. (1.24)].

6. G® AND “‘p,-LINEAR” FORMS

Each of the three subgroups G'¥ is again an SO(3, 1)
group. Transformations of the form (3.14) within
G™ leave py, p.p”, and «(p,) separately invariant. The
corresponding generators 7, in this case are not all
Hermitian, but

TTT,, = rlor‘aTn,Fors (= 70737;,,‘}’0'}’3)' 6.1)

In complete analogy with the case of G, the T,,
generate two inequivalent irreducible representations
of SO(3, 1), labeled by the two eigenvalues +i of
T'; (= v5ys) in this case.
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From
7 = (Pos P1> Pas P3, M), (6.2)
via G® transformations, one can obtain
P =Py, P1, Ps> P3» Pa)s (6.3)
where the p/(p,) are Hermitian,
P = pp" [= 2Py, prs p2s M), (6.4)
and
(o) = €(po). (6.5)

(Note that the transformations may become singular
as p,p"— 0.) The corresponding equation (3.13) in
each case is

(Lp” = Tap)y’ = 0 (6.6)
or, equivalently, the general “py-linear” form
Py’ = —ys(yops — 71P1 — 2Pz — POV (6.6)

Again in analogy with the G case, one finds that
every momentum-dependent transformation in G® is
canonical, the scalar-product mode [(1.8¢c);i = 3]
being preserved in each case as a result of (6.1).

The transformations presented in BC and leading
to “pg-linear” equations are all of G*® type (in each
case corresponding to the l.g.r.f. transformation of
p into p'). In the simplest case, for example, where the
equation is (1.25), corresponding to

[3, = (G(po)(prpr)é9 0’ 0’ D3, 0),
the l.g.r.f. transformation (1.28) is indeed of the form
exp {(i/D0™T,,}. (6.8)

Furthermore, all §" as in (6.3) can be written in the
form

(6.7)

P = (rqo, 141, rq2, s, 7q4), (6.9)

where ¢,(p,) are Hermitian, ¢,¢ is positive-definite,

r=(p.p) e, (6.10)
and

a(p"—q)=0. (6.11)

[Take g, = p,p’(p,p")"'p; -1 Equation (6.6) then be-
comes the general “ps-linear’” form of BC:
Py’ = —Npo, 1 P2y a4V

X ys(Yodo — 7191 — Ygd2 — 44y’ (6.12)
Again pseudoangles rather than angles appear in

association with the anti-Hermitian generators T,
[cf. (1.28)].
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7. SIGNIFICANCE OF THE LITTLE GROUP

We have mentioned that for a given “five vector”
P’ there is a little group of SO(4, 1) transformations
which leave it invariant. We are dealing here only with
functions on which p p'* (= p,p* = p,p* — m?) van-
ishes. In order to identify the little group appropriate
in this situation, consider the particular case (corre-
sponding to the Foldy-Wouthuysen-Tani equation)

7 =(po,0,0,0, w(p, m)). (7.1)

It is seen that the matrix generators corresponding to
the little group in this case are

Tl2 H T23 > and T31 ’ (72)

together with

Ty — E(pO)TM’ Ty — E(Po)Tu,

and Ty — e(po)Tas. (7.3)

The Lie algebra of (7.2) and (7.3) is isomorphic to that
of the three-dimensional Euclidean group, (7.2) being
the generators of “rotations,” and (7.3) of “trans-
lations.”

However, from (3.13) and (7.1), we find that
I’y — e(py)I'y vanishes on the wavefunctions involved
here. Multiplying this by (i/2)I'; (j =1, 2, or 3), we
obtain the result that this is also true of each of the
generators (7.3). Thus the little group is effectively
reduced to SU(2).*8

We conclude that, for any given j’, the little group
consists of an effective part, which is SU(2), and an
ineffective part. Any transformation in. the ineffective
part is unity when applied to a wavefunction satisfying
(3.13), while one in the effective part produces a new
function satisfying the same equation. Note that j’,
asin (7.1), can be obtained from j by a transformation
in G and that the effective little group generators in
this case (7.2) also generate G'” transformations. This
indicates that if (3.13) is obtained from (2.10) by means
of a canonical SO(4, 1) transformation (i.e., a trans-
formation in one of the subgroups G'), a subsequent
little-group transformation leaving (3.13) invariant is
also canonical.

It is clear that any p’ and p” obtained from j by
SO(4, 1) tranformations (3.14) must themselves be
linked by a further such transformation. Furthermore,
by a procedure analogous to that used in obtaining
(3.13) from (2.10), it is possible to obtain the equation

L,p"y" =0 (7.4)

18 There is a marked analogy here with the case of the little
group (in the usual connection with the Poincaré group now)
appropriate to a particle of zero rest mass and nonzero spin, as
treated by V. Bargmann and E. P. Wigner, Proc. Natl. Acad. Sci.
U.S. 34, 211 (1948). See also de Vos and Hilgevoord (Ref. 5) in this
connection.
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directly from

Ip*y = 0. (1.5)

Denoting by Q" and Q' the operators (3.10) used to
obtain " and ¢, respectively, from y'®, we have,
trivially,

V= Q0. (7.6
While the operator Q"Q'~* certainly corresponds to an
SO(4, 1) transformation taking §’ into 5" and enables
one to obtain (7.4) from (7.5), it will not in general
correspond to the lg.r.f. such transformation, even
if 9" and Q' correspond to the l.g.r.f. transformations
taking g into p”, p’, respectively. More precisely, if we
denote by Q(p', p), Q(p", p), and Q(p", p’) the oper-
ators (3.10) corresponding to the l.g.r.f. transforma-
tions taking p into p’, p into p”, and p’ into p”,
respectively, then in general

Q" p) = AQ(F", (P, p)s

where A is also of the form (3.10) and corresponds
to an SO(4,1) transformation in the little group
defined by p". If A is in the effective part of the little
group, then Q(p", p') and Q(p", p)Q~(p’, p) will differ
on the wavefunctions »’; but if it is in the ineffective
part, then these two operators, while perhaps differing
formally, will produce the same result when applied to
any such " satisfying (7.5).

As an example, consider the case when j’ is as in
(7.1), and

(1.7)

7" = ((po)(pp"t, 0, 0,0, m), (71.8)

corresponding to the Chakrabarti equation. It is seen
that in this case the l.g.r.f. transformation taking
P’ into p” is in the 0-4 plane, and correspondingly,
(7.9
(7.9

O(p", p') = exp (ipTy,)
= cosh (3¢) — y, sinh (39),
where @(p)is Hermitian. A straightforward calculation

of the pseudoangle ¢ involved in this “boost” trans-
formation yields

@(p) = arc tanh {e(po)[6% — MA[E? + M3, (7.10)
where
& = Hipol + w(p, m)] (7.11)
and
Mo = H(pp"t + m]. (7.12)
Then
cosh (3¢) = H{[&/M]E + [/8]}}  (7.13)
and
sinh (3¢) = [Be(p)I{[8/M] — [M/E]E}. (7.14)



2032

Because p’ in this case corresponds to the Foldy-
Wouthuysen~Tani equation, Eq. (7.5) yields

My = my', (7.15)
&' = w(p, my’, (7.16)

and
(poyoy’ = ¥ (7.17)

It follows then from (7.9') and (7.13)-(7.17) that

O, B = [mfw(p, mty.  (1.18)
However, in this example we have
Q(p', p) = F(p, m) (7.19)
and
Q@ p) = C(p), (7.20)

and it is known that!®

$'O(x) [= C(p)F(p, M)y T (x)]
= [mjo(p, mPFy(x). (7.21)

Thus from (7.18) we deduce

", Py = C(DF'(p, myp'™” (1.22)
= Q(p", O, pv'F. (1.22)

~lf ot ~i

On inspection, however, Q(5”,p") and Q(p”, p) X
Q7Y (p’, p) are found to be formally distinct, and we
conclude that they are related in the manner (7.7),

M

with A in the ineffective part of the little group of 5”.

8. CONCLUSION

The connection between the group SO(4, 1) and the
free-particle Dirac equation can be exploited to allow
the presentation of a unified treatment of the well-
known canonical transformations of the equation.
Similarities and relationships between these trans-
formations assume a new and simple significance in
such a treatment.

This approach also makes obvious the existence and
also the actual form of many other similar canonical
transformations, some of which we feel will prove

1% R, H. Good, Jr., and M. E. Rose, Nuovo Cimento 24, 864
(1962).
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useful® in discussing limiting situations other than the
nonrelativistic and extreme-relativistic ones (where the
Foldy—Wouthuysen-Tani and the Mendlowitz trans-
formations, respectively, are most appropriate).

It is tempting to speculate as to a deeper physical
significance of the group SO(4, 1) itself in this context,
in view of recent activity centering on this and related
groups in connection with dynamical symmetries?-2°
for elementary particles. However, there are relativistic
wave equations, linear in the energy-momentum
operators, for which there is no simple connection with
S04, 1).2! For all such equations describing massive
particles, it is, however, a consequence of Lorentz in-
variance that there will be a Chakrabarti-type trans-
formation corresponding to the transformation of
the four momentum to the rest frame: Such a trans-
formation expresses the canonical Wigner amplitudes
in terms of the manifestly covariant ones.

Foldy and Wouthuysen!® generalized their approach
to the free-particle Dirac equation to gain considerable
insight into the problem of the Dirac particle in
interaction with a weak electromagnetic field, and this
approach has been pursued consequently by several
authors.?? The Foldy-Wouthuysen method involves a
perturbation procedure and yields a “pg-linear”
equation containing an infinite number of terms. In
the absence of the interaction, this equation reduces to
their form of the free-particle equation. One of us
(H. A.C.) has generalized this procedure to develop
similar expansions corresponding to various other
forms obtainable from the free-particle Dirac equation
via canonical SO(4, 1) transformations.
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A method is proposed for labeling the bases of a compact group when reduced with respect to an
arbitrary subgroup. The scheme is based on the observation that the heaviest state of a muluplet (sub-
group irreducible representation) of an IR (group irreducible representation) can be labeled by a product
of heaviest states of simpler “elementary’’ multiplets. Details are worked out for a number of group-

subgroup combinations.

1. INTRODUCTION

A recurring problem in the application of group
theory to physics is the reduction of the irreducible
representations (IR’s) of a group into irreducible
representations (multiplets) of a subgroup.! (For
clarity, we use different words for the irreducible
representations of the group and its subgroup.) One
aspect, the internal-multiplicity problem, is solved
by a simple enumeration of the multiplets in each
IR. To solve the more general internal-labeling (or
state-labeling) problem, it is necessary to specify the
multiplets, i.e., define an actual basis for the [R’s. We
are concerned with the labeling problem in this paper;
it must be solved, of course, in ordet to define and
evaluate generator and transformation matrix ele-
ments, Clebsch-Gordan coefficients, etc.

Racah? showed that the number of internal labels
required to specify the basis states of the general IR of
a compact group is §(r — /), where r is the order of the
group (number of generators) and / its rank (number
of suitably chosen commuting generators). In general,
the nature of these labels and the values they may
assume for a particular IR is an unsolved problem. If
there is a subgroup which, together with other
generators which commute with it and each other,
provides the right number of labels, the basis states of
the subgroup multiplets may be used as basis states for
IR’s of the group, solving the internal-labeling prob-
lem; such a scheme is called mathematically canonical.
(We do not use “mathematically canonical” in the
sense ‘‘having among the labels a number of commut-
ing generators equal to the rank of the group.”) In
general, however, no suitable subgroup exists, and
even if one does, the states of physical interest may

* Research supported by the National Research Council of
Canada.

1 For a discussion of the internal-labeling problem with special
reference to SU(N) see L. C. Biedenharn, Boulder Lectures at the
Summer Institute of Theoretical Physics §, 258 (1962).

2 G. Racah, lecture notes on “Group Theory and Spectroscopy,”
Institute for Advanced Study, Princeton, N.J., 1951; reprinted in
Ergeb. Exakt. Naturw. 37, 28 (1965).

correspond to multiplets of a different subgroup which
provides too few labels.

In Sec. 2 we describe an approach which, in prin-
ciple, solves the internal-labeling problem for any
compact group and subgroup. In Sec. 3, a number of
specific examples are worked out in detail and we refer
to other methods which have been applied to some of
these examplies by various authors.

2. ELEMENTARY MULTIPLETS AND
FACTORS

We follow Cartan’s method® of constructing the
IR (4, -, 4,) of a compact group of rank / as the
stretched product of the “simple” IR’s (4,,0,---,
0), --,(,---,0,4). The stretched product is de-
fined as the IR in the direct product which contains
the product of the heaviest states of the factor IR’s.
The simple IR’s (4,,0,---,0),:--,(0,---,0,4,)
are, here, polynomials of degree 4,, -, 4;, respec-
tively, in the basis states of the / fundamental IR’s
(,,0,+-+,0),- -+, (0,---,0,1). For simplicity, poly-
nomials are used for the IR (0,---,0,4,,0,:--,0)
rather than the stretched product of 4, independent
copies of the ith-fundamental IR. This has the in-
cidental advantage of eliminating all but completely
symmetric IR’s and requiring fewer variables. (Since
we are not concerned with representation matrices in
this paper, no confusion should arise when “IR”’ or
“multiplet” is used for the longer “basis for IR” or
“basis for multiplet.”’) The IR (4, -, 4,) thus
consists of polynomials of degrees 4,,-:, 4, in the
respective fundamental [R. States of degree 4,, - - -, 4,
but belonging to IR’s lower than (4,,---,4,) are
called “‘unwanted’’ and are to be discarded in general.

The product of the heaviest states of two or more
multiplets from the same or different IR’s defines,
in general, a multiplet of a higher IR, specifically,

3 We refer to the fact that such a construction is possible as
Cartan’s fundamental theorem. See E. Cartan, Thése Paris (1894)
reprinted in E. Cartan, Oeuvres complétes (Gauthier—Villars, Paris,

1952). Discussions of the result are found in Refs.1 and 2 and in most
books on group representations.

2033



2034

the product will be the heaviest state of the multiplet
so defined when unwanted states have been projected
out of it. Our solution of the labeling problem is based
on the observation that a complete set of multiplets
of all IR’s may be defined in this way through products
of powers of certain “‘elementary factors.”” The
elementary factors evidently include the heaviest states
of all the multiplets in the fundamental IR’s. In the case
of SU(N)> SU(N — 1), no others are required; in
general, elementary factors belonging to higher IR’s
are needed. They may be found by proceeding
systematically through higher IR’s. When a multiplet
known to be present is not given through the elemen-
tary factors already at hand, its heaviest state must be
included as a new elementary factor.

The correspondence between multiplets and prod-
ucts of powers of elementary factors is one-to-one
when certain relations are taken into account. These
relations arise when a linear superposition of products
of powers of elementary factors vanishes identically
or is equal to an unwanted expression. In each such
case, to avoid duplication of multiplets, one term in
the superposition must be singled out and regarded as
redundant.

For each group-subgroup combination which we
have considered, a finite number of elementary factors
suffice; the relations can be taken into account in a
systematic way by regarding certain combinations of
elementary factors as incompatible or redundant by
themselves or for the purpose of forming higher
multiplets. In all such cases, a solution of the internal-
labeling problem is thus obtained in closed form. We
are unable to prove that a finite number of elementary
factors suffices in general; but even if an infinite num-
ber is required, a finite number of them solves the
labeling problem up to IR’s of any preassigned degree.

A nonredundant product of powers of elementary
factors must have unwanted states projected out of it
before it is the heaviest state of the multiplet it defines.
Equivalently, it is the leading (zero-order) term in the
expansion of the state in powers of redundant com-
binations arising from unwanted expressions. (‘“Re-
dundant combinations’” here include quantities which
must be added to the elementary factors themselves to
render them free of unwanted states.) The product of
powers thus proves useful as a handle for manipulation
of the complete state. For example, to expand a state
known to be free of unwanted states in basis states
labeled by products of powers of elementary factors
(as in the determination of generator and transforma-
tion matrices, Clebsch-Gordan coefficients, etc.), it
is necessary only to pick out the coefficients of the
nonredundant products of elementary multiplets.

R. T. SHARP AND C. S. LAM

The labeling procedure described above is applied
to particular cases in the next section. The new labels
and their relation to more conventional quantum
numbers are dealt with under individual cases.

Although we follow Cartan in constructing bases of
a group by using its / fundamental IR’s, the approach
could as well be used with Gel’fand-type bases, i.e.,
ones which are polynomials in / independent copies
of one basic or defining IR. Indeed, particular cases of
states of Gel’'fand-type, constructed with the help
of elementary factors, appear in the literature and
will be referred to under the appropriate headings
[SUB3) > 0(3) and SU(N)> SUN — 1)] in the
next section.

Methods analogous to those of this paper can be
used for labeling the IR’s of a group which are
spanned by polynomials in the states of a few specific
IR’s of the same group.

The external-labeling problem for any group G can
be treated as a special case of the internal-labeling
problem for the group-subgroup combination G X
G>G.

3. EXAMPLES

In the following examples, Cartan’s 4, - - -, 4, are
used to label the irreducible representations of groups
and subgroups except for SU(2) ~ O(3) and O(4) ~
SU(2) x SU(2) which, by tradition, are labeled by
j=43%4 and j, =34, j, = 44,, respectively. An
abbreviated notation for an elementary factor is
(a; b), where a denotes the IR and b the multiplet to
which it belongs.

We discuss SU(3) > O(3) in some detail since it is
perbaps the simplest case which illustrates the general
features; the version SU(3) > SU(2) which describes
the SU(3) symmetry of elementary particles is not
considered explicitly, since it is a special case of
SU(N)  SU(N — 1) below.

Case 1: SU(3) @ 0O(3) describes the Elliott—-Harvey
classification of nuclear states*; O(3) refers to angular
momentum. The subgroup provides one label too

few.
The states of the fundamental IR’s are shown in
Fig. 1. The elementary factors are (10;1) = 7%,

4 For a discussion of the nuclear SU(3) model and earlier refer-
ences, see M. Harvey, Advan. Nucl. Phys. 1, 67 (1968). Elliott solves
the labelling problem by projecting good orbital angular momentum
states out of certain “intrinsic” states which are simple SU(3) =
SU(2) states (those with maximum hypercharge) and retaining a
nonredundant set. V. Bargmann and M. Moshinsky [Nucl. Phys. 23,
177 (1961)) and M. Moshinsky and V. Syamala Devi [J. Math.
Phys. 10, 455 (1969)] use elementary factors'to obtain SU(3) = oQ3)
states of Gel'fand type equivalent to those defined in the present
paper. R. T. Sharp and H. C. von Baeyer [Nucl. Phys. (to be pub-
lished)] give the transformation matrices connecting Elliott-Harvey
and Bargmann-Moshinsky states.
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F1G. 1. The fundamental IR’s of SU(3); heaviest states of O(3)
multiplets are denoted by X.

(20;0) = 2 —29¢, (O1;1) = &%, (02;0) = {** ~
2n*&*, and (11; 1) = n{* 4 £*{. There is one rela-
tion; (11; 1)? is redundant, i.e., (11;1) appears at
most linearly.

The elementary factors may be found systematically
as follows: First, (10; 1) = % is needed as the heaviest
state of the multiplet in the fundamental IR (10);
combining the multiplet (10; 1) with itself yields a
j = 2 multiplet whose heaviest state is #? (evidently
not an elementary factor) and an O(3) scalar,
(20; 0) = % — 2n&, which is a new elementary factor.
The j = 1 multiplet, which might be thought to arise,
in fact vanishes because of antisymmetry. The two
elementary factors (10; 1) and (20; 0) are sufficient to
generate all IR’s of the form (4;,0). Similarly,
(01;1) = &* and (02; 0) = {*2 — 29*&* generate all
IR’s of the form (0, 4,). The multiplets (10; 1), (01; 1)
can be combined to give three multiplets with j = 2,
1, 0, respectively; their heaviest states are, respectively,
n€*, (I1;1) = q{* + €4, and B = qy* + L0* +
&&*. Of these, only the second is a new elementary
factor; the first is a composite of the elementary
factors n and {*, and the third is an unwanted expres-
sion belonging to the IR (00). Because of the relation
(11; 1)2 = 2B(10; 1)(01; 1) + (10; 1)2(02; 0)

+ (015 1)*(20; 0),
we regard (11; 1) as redundant.

The general multiplet corresponds to the product
(10; 1)%(01; 1)¥(20;0)*(02; 0)*" (11; 1)°, where ¢ = 0, 1
only. Thelabels are related to the more familiar 1,4,L by
A=a+2b+c,lh=d+2+c,L=a+d +c.
The index c¢ is not to be regarded as an independent
label; it is O or 1 depending on whether 4, + 4, — L
is even or odd. For the simple IR’s (4,, 0) and (0, 4,),
only ab and a'b’, respectively, are needed; of the
conventional labels, 4,L and A,L then suffice.

To show that the states thus defined form a basis, it
is necessary to note that they are linearly independent
and then to count them. The counting here is simple
enough—it leads to the correct dimension formula:

D(Ay, 4p) = 3(h + D0 + DAy + 4 + 2).
As a model for more complicated groups, e.g., cases

Fic. 2. The funda-

£ m £ m  mental IR’s of 0O(4);
* x L4 X heaviest states of O(3)
(D) % multiplets are denoted

by X.
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Fi1G. 3. The fundamental IR’s of O(5) with heaviest states of 0O(4)
multiplets denoted by X.

7 and 8 below, it is easier to do the counting for the
quantity

2D =D +2, 2 +2)
= DAy, A+ 2) — D(A + 2, 43) + D(4y, 2y)

instead of for D itself. It may be seen that A}, D is
just the number of states with b = b = 0 in the IR
(A + 2, 4, + 2), ie., the number of states in the
multiplets (10; 1)*+2(01; 1)***2 and

(10; 1)+1(01; 1)++(115 1),

whose dimensions are, respectively, 24, + 24, + 9
and 24; + 24, + 7. This agrees with the result 4(4, +
4y + 4), obtained for A%, D by using the known
dimension formula. To complete the argument, one
can verify directly that the elementary factors lead to
the correct dimension formula for those boundary
cases in which either 4, or 4, is equal to O or 1.

Case 2: O(4) = O(3): special IR’s (j, = j,) describe
the states of the hydrogen atom; O(3) refers to orbital
angular momentum.

The states of the fundamental IR’s are shown in
Fig. 2. The elementary factors are (30;3%) = ,,
(03;3) = n2, (33;0) = mé&, — 26y There are no
relations or unwanted expressions. The heaviest state
of the general multiplet is n2na (n,&, — 1.6,)°. The
labels are related to the more familiar j,, j,, j by
ji=3a+b), jo=13d +b), j=}a+a).

Case 3: O(5) ~ O(4): the mathematically canonical
classification of O(5) states.>¢

The states of the fundamental IR’s are shown in
Fig. 3. The elementary factors are (10;30) = «,
(10; 0}%) = y,(01; %) = 7n,(01;00) = A; a number of
other candidates are redundant because of unwanted

5 Canonical O(5) > O(4) states have been derived by K. T. Hecht
[Nucl. Phys. 63, 177 (1965)], by R. T. Sharp and S. C. Pieper [J.
Math. Phys. 9, 663 (1968)], and by N. Kemmer, D. L. Pursey, and
S. A. Williams [J. Math. Phys. 9, 1224 (1968)]. Since O(4) is a mathe-
matically canonical subgroup of O(5), the states of different authors
can differ only by phase factors.

¢ K. T. Hecht, Nucl. Phys. 63, 177 (1965).
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Fi1G. 4. The fundamental IR’s of O(5) with heaviest states of SU(2)
multiplets denoted by X.

expressions. The general O(4) multiplet is defined by
the product a®y®%°A%. The labels are related to the more
familiar 414/, /. by i =a+b, h=c+d, j =
a+c¢), and j, = §(b + ¢). For the simple IR’s
(%1,0) and (0, 4,) only ab and cd, respectively, are
needed.

Case 4: O(5) > SUQR) describes the Hecht-
Parikh classification of nuclear states’ (seniority
model); SU(2) refers to isospin and the quantum
number V below, plotted vertically in Fig. 4, is related
linearly to the number of nucleons. The subgroup,
with ¥V, provides one label too few.

The elementary factors [the notation is (4,4, V)]
are

(10;3H =y, (10,3 - =«
(01;01) = &, (01;10) = n,
(01;0 — 1) = 0, (20; 00) = yd — ap.

On account of the unwanted expression

(20; 00)(01; 10) + (10; 3 — 1)*(01; 01)
— (10; $3)*(01;0 — 1),

the combination (20; 00)(01; 10) should be regarded
as redundant. Thus the general SU(2) multiplet is
defined by the product (10; $3)%(10; 3+ — 4)*(01; 10)°
(01; 01)4(01; 0 — 1)°(20; 00)f, with either ¢ =0 or
f=0. The more conventional labels are given by
M=a+b+2f,lh=c+d+tej=4%3a+b)+c
and V= 1(a —b)+ d—e. For the simple IR’s
(41, 0) and (0, 4,), the only labels needed are abf and
cde, respectively; then the conventional labels A, jV
and 4,7V are enough.

7 For a discussion of the O(5) nuclear model and earlier references,
see K. T. Hecht, Nucl. Phys. A102, 11 (1967), and R. P. Hemenger,
University of Michigan preprint 07591-3-T, 1968. K. T. Hecht, Ref.
6, discusses the transformation between O(5) > 0(4) and O(5) =
SU(2) states for some simple IR’s. K. Ahmed and R. T. Sharp
{J. Math. Phys. (to be published)] have derived general states based
on the approach of the present paper, but taking as redundant the
combination (10; 3 — $)? X_(01; 01) rather than (20; 00)(0!; 10),
as proposed in the text.
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Fic. 5. The fundamental IR’s of O(5) with heaviest states of SU(2)’
multiplets denoted by X.

Case 5: O(5) @ SU(2)": IR’s (0, A,) describe classi-
fication of nuclear surfon states, i.e., quantized nuclear
surface excitations®; SU(2)" refers to orbital angular
momentum. The prime is to distinguish the SU(2)
subgroup from that of Case 4 above. The subgroup
provides two labels too few. Since this case is com-
plicated(more than twenty elementary factors),we only
consider the simple IR’s (4, 0) and (0, 4,); for them
the subgroup provides one label too few.

The fundamental IR’s are shown in Fig. 5. The
elementary factors required for (4,,0) IR’s are
(10; 2), (20; 1), (30;2), and (40; 0), with (30; 2)2 re-
dundant; we refrain from giving elementary factors
and relations in polynomial form. The general
(4, 0) type SU(2)" multiplet is thus (10; £)(20; 1),
(30; 2)°(40; 0)* with ¢ = 0 or 1. The conventional
labels are A, =a + 2b + 3c + 4d, j = 3(a + ¢) + b.
The elementary factors required for (0, 4,) IR’s are
(01; 2), (02;2), (03;3), and (03;0), with (03;3)2
redundant. The general (0, 4,) type SU(2)" multiplet is
thus defined by (01; 2)%(02; 2)*(03; 3)°(03; 0)*" with
¢’ =0 or 1. The conventional labels are 4, =a’ +
20" + 3(c"+d')and j = 2(a’ + b') + 3.

Case 6: O(6) > O(5): a mathematically canonical
scheme for classifying O(6) states.

The states of the fundamental IR’s are shown in
Fig. 6. The elementary factors are

(100; 10) = «, (010;01) = », (010;00) = y,
(001; 10) = B*, (101;01) = ad* — pp*.

Thus the general O(5) multiplet is defined by the
product
(100; 10)%(010; 01)2(010; 00)(001 ; 10)* (101 ; O1)".,
The labels are related to the IR labels 4;4,1; and
muitiplet labels A4, by 4, =a+d, 1, =b + c:
ds=a +d, M=a+a, A=0b+d

Case 7: O(6) =~ SU(4) > O(4): the Wigner super-
multiplet scheme?®; O(4) = SU(2) x SU(2) describes

8 O(5) > SU(2Y states of the physically interesting IR’s (0, 4,) are
discussed by K. T. Hecht, Ref. 6, and by S. A. Williams and D. L.
Pursey, J. Math. Phys. 9, 1230 (1968).

? The Wigner supermultiplet group has often been discussed in the
literature. A graphical solution of the internal multiplicity problem
is given by A. M. Perelomov and V. S. Popov, Yad. Fiz. 2, 738
(1965) [Sov. J. Nucl. Phys. 2, 528 (1966)]; explicit states of Gel'fand
type have recently been constructed by M. Resnikoff (report of
work prior to publication).
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F1G. 6. The fundamental IR’s of O(6) with heaviest states of O(5)
multiplets denoted by X.

spin and isospin. The subgroup provides two labels too
few for the general IR, one too few for IR’s in which
one of 4,4,4, vanishes, just enough for the simple IR’s
(2,00), (04,0), (004;).

The states of the fundamental IR’s are shown in
Fig. 7. The elementary factors, whose algebraic form
we omit, are (100, 1), (200; 00), (010; 10), (010; 01),
(020; 00), (001; 3%), (002;00), (101;10), (101;01),
(110; 1), (011, %%), (111;10), and (111;01). The

redundant combinations are (111;10)(101;01);
(111; 01)(101; 10); (101; 10)(101 01), (110; 13)%;
(0113 22)2 (110’ f%)(()]l’ 22 3 (110 (001’ 22)3

(011; $3)(100; 3}); and (100; 33)(001; 2%)(020 00);
and either (111; 10) or (111;01) with any of (100; 43),
(001; 3%), (1105 43), (O11;44), (111;10), and (111;01).

We omit relating labels which are the indices of
elementary factors to the conventional A,4,4;, j»; the
connection is easily written down, since the conven-
tional labels are additive for powers of elementary
factors.

Case 8: G, > SU(3): the exceptional group, at one
time considered a candidate for describing particle
symmetries'®; it has no mathematically canonical
subgroup. The subgroup SU(3) provides one label
too few for the general IR, the right number for the
simple IR’s (4,0), (04;).

The fundamental IR’s are shown in Fig. 8. The
elementary factors are just the heaviest states of the
multiplets of the fundamental IR’s, ie., (10;10),
(10; 01), (10;00), (01;10), (01;01), and (01;11);
there is one redundant combination, (10; 00)(01; 11).
The conventional labels 4,2,4,2, are easily expressed in
terms of the exponents of elementary factors, since
they are additive for such products of powers.

Case 9: SU(N) = SU(N — 1); possibly the most
studied group-subgroup chain!; includes SU(3) >
SU(2), which is used to classify elementary particles.

10 Attempts to use G, to describe particle symmetries are described
by R. E. Behrends, J. Dreitlein, C. Fronsdal, and W. Lee, Rev. Mod.
Phys. 34, 1 (1967). They also give the fundamental IR’s, the dimen-
sion formula, and some simple Clebsch-Gordan series.
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multiplets denoted by X.

SU(N — 1) is a canonical subgroup, for, together with
the *“N-hypercharge’ Zy, it provides enough internal
labels for SU(N) states.

There are N — 1 fundamental IR’s. The ith-
fundamental IR (i =1, -, N — 1) has one column
of i boxes in its Young diagam; it contains two
multiplets, which we denote by (i; 1) and (i; 2). For
(i; 1), the N-hypercharge Zy has the value /N, and
the multiplet is the ith-fundamental irreducible repre-
sentation of SU(N — 1), except for i = N — 1 when
it is an SU(N — 1) scalar. For (i;2), the value of
Zy is i/N — 1, and the multiplet is the (i — 1)th-
fundamental irreducible representation of SU(N — 1),

® °
. °
° x [ x
x [ ] @ X
] x L] x
[ ] ®
(1e) [ ] ®
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Fic. 8. The fundamental IR’s of G,; heaviest states of SU(3)
multiplets are denoted by X.

except for i = 1 when it is an SU(N — 1) scalar. The
elementary factors are just the heaviest states of the
2N — 2 multiplets of the N — 1 fundamental IR’s.
There are no redundant combinations. Expressions
for the 2¥ — 2 conventional labels 4, --, dy_,,
Zy, Ay, Ay, are easily found in terms of the
exponents of the 2N — 2 elementary factors, since the
conventional labels are additive for products of
powers of elementary factors.

Case 10: G > U(1); here one is, in effect, using no
subgroup at all to help label the states.

11 Heaviest members of SU(N) > SU(N — 1) multiplets of
Gel’fand type are given explicitly by G. E. Baird and L. C. Bieden-
harn, J. Math. Phys. 4, 1449 (1963), Eq. 50. The states involves
elementary polynomials in boson creation operators (operating on a
vacuum ket) similar to the elementary factors of the present paper.
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The elementary factors are all the states of all the
fundamental IR’s. In general, certain combinations
are redundant because of unwanted expressions. As
an example, we consider the labeling of SU(3) states.
The fundamental IR’s are shown in Fig. 1. The ele-
mentary factors are now 5{Exn*{*&*, The unwanted
expression nn* + {{* + £&* implies a single re-
dundant combination which may be taken to be {{*.
Thus the states'? are defined by 52n*@EvExvfep*e’

12 The states defined in the text are analogous to the “Weyl” states
described by Baird and Biedenharn in Ref. 10.
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withc =0or¢ = 0; the IR labelsare , = a + b +
cand A, =a 4+ b' + C'.

Case 11: G > G the trivial case in which the sub-
group is the group itself.

Here the terms IR and multiplet are synonymous.
The elementary factors are just the heaviest states of
the fundamental IR’s. That the heaviest state of each
multiplet (IR) is a product of powers of the elementary
factors is just the content of Cartan’s fundamental
theorem. There are no redundant combinations.
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After a brief summary of the results obtained previously concerning the boson formalism in super-
conductivity, the formalism is generalized to include finite temperature and Coulomb interactions.
Finally, as an illustration, the formalism is used to derive the Landau-Ginsburg equations and to study

the vortices in type II superconductors.

1. INTRODUCTION

The results of previous articles'2 suggest that most
of the characteristics of the ground state of super-
conductors are controlled by bosons which can be
mainly regarded as bound states of quasi-electrons.
The purpose of this paper is to generalize in several
directions the formalism developed previously and to
extend it.

After briefly summarizing the results already
obtained and showing how the boson formalism is
particularly well suited to the description of the
problems of gauge invariance, we first indicate how
to generalize this formalism to all temperatures below
T,, how to include the effect of an external electro-
magnetic field, and finally how to take into account
the Coulomb interaction among electrons.

In this last generalization we find that there appear
two types of plasmalike oscillations. One type of
oscillation is similar to the one appearing in a normal
electron gas, whereas the other type is actually a
phase oscillation which recovers the gauge invariance.
The characteristics of these two modes are not neces-

1 L. Leplae and H. Umezawa, Nuovo Cimento 44, 410 (1966).

2 L. Leplae, R. N. Sen, and H. Umezawa, Progr. Theoret. Phys.
(Kyoto) Suppl. (1965); L. Leplae, R. N. Sen, and H. Umezawa,
Nuovo Cimento 49, 1 (1967).

sarily the same under every circumstances. The
possibility of distinguishing experimentally these two
modes will be the object of an article to come.

We also find that the Coulomb effect does not
introduce any major change in our previous results.
Furthermore, the treatment of the Coulomb effect
demonstrates once more the simplicity of the for-
malism.

After having introduced these generalizations, we
proceed to show that in this context the generalized
Landau-Ginsburg®—® equations can be derived very
simply.

Finally, we show that the importance of the bosons
becomes most explicit in the formation of vortices.
We will see that the radius of the vortex core is a
macroscopic manifestation of the uncertainty prin-
ciple, thus supplying us with another macroscopic
example of the quantum mechanical nature of super-
conductivity.

Let us close this section by a remark on notations.
In Sec. 3, a superscript © is used to designate the
operators which depend on the Coulomb interaction.

3 L. P. Gor’kov, Zh. Eksp. Teor. Fiz. 36, 1918 (1959) [Sov. Phys.—
JETP 9, 1364 (1959)]. .

4 N. R. Werthamer, Phys. Rev. 132, 663 (1963).

5 L. Tewardt, Phys. Rev. 132, 595 (1963).
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The elementary factors are all the states of all the
fundamental IR’s. In general, certain combinations
are redundant because of unwanted expressions. As
an example, we consider the labeling of SU(3) states.
The fundamental IR’s are shown in Fig. 1. The ele-
mentary factors are now 5{Exn*{*&*, The unwanted
expression nn* + {{* + £&* implies a single re-
dundant combination which may be taken to be {{*.
Thus the states'? are defined by 52n*@EvExvfep*e’

12 The states defined in the text are analogous to the “Weyl” states
described by Baird and Biedenharn in Ref. 10.
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In the sections following Sec. 3, this is not done
because all the arguments are true whether the
Coulomb interaction exists or not.

2. SUMMARY OF PREVIOUS RESULTS
To begin with, let us summarize briefly the results

of our previous articles.
The Hamiltonian used here is the familiar one

H = Eek(a;rTakT + a-{lakl)
+ (=1 3 aradi 0 gt (D
We looked for a set of creation and annihilation
operators of free fermions (o 4(¢), o, 1(¢)) and free
bosons (Bj(t), B,(¢)) which are determined by the
conditions that their time dependence has the form

—iExt
’

%) 1(8) = ol e
B, (t) = Bke_iwkt 2

and that the electron operators a,; ;(¢) are expressed
as a linear combination of normal products of these
free operators

a1(t) = t(t) cos O, — &, 1(t) sin O, (3a)
etc., where
Zt(t) = ag1() + 2 filps l)°¢k+zl(t)“p+%zT(t)°‘—p+1}zT(t)
D,

+ 3 b, Dt (et 3 (D10
+ 3 g Moty (DB
+ zlg;”(l)afw(r)B‘:l(r) + -0, (3b)

etc. Here, the intermediate operators &(¢) were intro-
duced to simplify the formula. Note that the quasi-
fermion operators (a*, «) and boson operators
(B*, B) commute with each other. The quantities
b, f, h, gV, g®, E,, and w, are so determined that
a(t) satisfies the canonical equations derived from the
Hamiltonian (1). It should be noted that the existence
of the Bose field B, is not assumed, but is required by the
fact that a(t) has to satisfy the above-mentioned equa-
tions as is extensively shown in Ref. 1. There it is also
shown that B is a bound state.

It can be shown that the Hamiltonian given in (1)
takes the form

H = Y Exoitont + ailoq) + 3 @Bl By,

when expressed in terms of the free operators.

The calculation of 0, f, A, gV, g'¥, E,, and w, are
presented in Ref. 1. In particular, w, is found to be
proportional to /:

4)

&)

Using the expressions in Egs. (3), we express the

w; = v, |1
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charge and current densities
, p(x, 1) = yipr + piyy, (6)
ix, 1)
= 2m) ' [pIVyt — Vol - gt + 9]V, — Vo[ - 9]
Q)

explicitly in terms of free operators (o, , By), where

Yy = 2 agt (te
k

ik-x

The results are the following!:

p(x, 1) = pV(x, 1) + pP(x, 1), (8)
i, 1) =0, 0 + 7%, 1), ©)
0 ,
P(z)(x, t) = —N 5 B(X, t); (10)
iP(x, 1) = vIVB(x, 1). 1
Here the boson operator B(x, t) is defined as
B(X, t) —_ z (zwl)—%(Blei(l'X—a)ﬂ) + B-ll-e—i(l-x—ﬂulf)).
N <lg
(12)
The cut off momentum /; is given by
Iy = 2A/v,, (13)

because the bosons decay into quasifermion pairs
when v/ > 2A.
The operator B(x, t) satisfies the equation

(a_t2 _ u?,vz) B(x, f) = 0.

It can be seen from (10) and (11) that j** and p®
satisfy the conservation law

(14)

. 0
V.](z) + ap(z) = 0.

The constant # in (10) and (11) is given by®
n = —28A[RO)}, (15)

where A is the energy gap [ie., E, = (2 + A2} and
R is defined by™8

i [d%
RO = — -
® 2J)(2n)?

® dw 1
X N2 2 . 2 2 .
~w 27 (0" — Ei 4, + ie)(w® — E}_3, + ie)
_1 d*k (Epeds + Exp) 1
4 )@2n)? (Egi3:Erp) (B + Ek—%l)z
(16a)

8 When Awe/Er < 1 and A%/#%w? « 1, one can show easily that
noe =~ —(n/m)}, where n is the electron density.

7 R(1) defined here corresponds to R(I, 0) in Ref. 1.

8 There are two misprints in Ref. 1: Eq. (4.3) in Ref. 1 should be
replaced by (15) of this article.
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The boson velocity v, is defined by the relation

o2IR(1)
i [d%

2)@2n)p?

Xfw dLU (e — 40"
—w 27 (w® — Ej 4, + ie)(w® — Ei_y, + i€)
— 1 d% (Exrds + Ex ) (03, — Gk—fln,)Z
4)Qn EnpErt (Ehi+ Ep)’
(16b)
This gives v, =~ (3)#V5 when the approximation
k ~ky is made in the above integration. (This
approximate form of v, is the one given by Bogoliubov®
for the collective modes.) The quantities p') and jV

in (10) and (11) mainly depend on the quasi-electron
operators (x, ™) and satisfy the conservation law

0
V_-(l) v (1)=0
J +atp

It was proved! that

f PrpP(x, 1) = 0, (17)
which shows that the Fourier component pM'(l, E)
vanishes at the low-momentum limit (1~ 0). To see
more closely the situation, the reader is referred to the
relations (3.4) and (3.7) in Ref. 1, which show that
pV(l, E) is small when v, I} < 2A. Therefore, we

find that
p(l, E)~ p'®(, E), for vyl K2A. (18)

Let us now discuss the gauge transformation. The
transformation

p(x, 1) > exp [i f(x, Dlyp(x, 1)
is generated by
N, = f df(x, Dp(x, 1)
which can be rewritten as
N, =fd3xf(x, DpB(x, 1)

= —q f Pxf(x, 1) % Bx,f,  (19)
when f(x, t) is a slowly varying function of x so that
only low momenta are important. In this case, it can
be seen from (19) that the gauge transformation is
induced solely by the boson.

® N. N. Bogoliubov, A New Method in the Theory of Super-
conductivity (Consultants Bureau, New York, 1959).
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To express the gauge transformation explicitly in
terms of free operators, we first compute the com-
mutator

[B(x, 0, % B(y, t)} —idx—y).  (20)

Since (20) is close to the canonical commutation
relation, we introduce the following notation:

(X, 1) = 9 B(x, t). (21)
ot
Then the approximation (18) gives
p(x,t) = —ym(x, 1). (22)

Making use of (12), we find that

ox — y) = L “dg L "sin 6 d6 L "I dletxrieso (93

which has the following normalization:
fdsyc(x —y=1

We are now ready to compute the commutator
between the generator and the boson operator,

[N, 77 'B(x, )] = i f dye(x — Yf(y, 1), (25)

where (19) was used. From this, the gauge transforma-
tion is found to be

(29)

P1,1(X, 1) —>exp [—iN o1 i(x, 1) exp [iN,] = ¢t,1(x, 1),
B(x, t) —exp [—iN]B(x, t) exp [iN,]

= B, 1) + 7 f dyex — Ny, (26)

Here the quasifermion field ¢(x, ¢) is defined as
P1,1(%, 1) =fd3kak1,¢e"“‘"”"“3
In the special case of f(x, t) = 1, Eq. (25) becomes

[N, n71B(x, )] = i. 27

This shows that %18 is the canonical conjugate of
the number operator of electrons. Owing to this
reason, B was called the phason field. When f(x, 1)
is a constant, say 6, the gauge transformation (26) is

¢ —>¢, B-— B+ nb. (28)
This shows that y takes the form
1,1 = P"F(p, VB, 7) (29)

when expressed in terms of the free fields B and ¢.
Obviously, the phason equation (14) is invariant
under the gauge transformation (28) as it should be.
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This last expression shows explicitly that the gauge
transformation is controlled mainly by the phasons
when f(x, 7) is a slowly varying function of X. On the
other hand it can be shown that, when f varies
strongly so that high momenta dominate, the gauge
transformation is essentially controlled by the quasi-
fermions.

We close this section by noting that the gauge
transformation (26) modifies the ground state current
by the amount

(8j) = it f Fyex — VI 0, (30)

where use was made of (11).

3. COULOMB EFFECTS

In the previous section we completely disregarded
the Coulomb interaction. As the following considera-
tions show, it is a simple matter to take into account
the Coulomb effects in this formalism.

Let us first recall that ¢(x, t) and B(X, ?), introduced
in the previous section, are the free operators and,
therefore, that the Hamiltonian (1) can be expressed
in the form of a free Hamiltonian of these operators

[cf. (4)]:

H = Hy(B) + Hy(¢), 31
where
Hy(p) = 3 Ey(oogt + o0iaul) (32)
k
and
HoB) = 3 w,B}B,
1<ty

= %fdax[vr2 + v2VB . VB] + ¢ number. (33)
Here = is defined by (21), i.e.,

(34)

7 = — B.
ot

When the Coulomb interaction is introduced, the
new electron field y© satisfies the canonical equation

2 . , _
= vOx, 0 = —ilyCx, 0, BC. (39
Here the new Hamiltonian A© has the form
A = H® + HY, (36)

in which the Coulomb interaction HG) is given by

2 ©
H(C?,=e—fd fd3 M (37)
2 Ix — vyl

and HO is defined by replacing y by ¥© in the old
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Hamiltonian (1):

HO =H,,,0. (38)

The “neutral” electron field v is related to v© by
a unitary transformation S(z):

»O(x, 1) = S (M)w(x, DS(). (39)
Let us define
?O(x, 1) = S (De(x, HS(1), (40)
BOx, t) = S(HB(x, £)S(), (41)
7O(x, t) = SN t)m(x, £)S(t)
= S7X1) g—t B(x, )S(1), (42)

where @ and B are the operators introduced in the

last section.
We see from (39) that

p®(x, 1) = STH(t)p(x, NS(8),

(43
i€x, 1) = ST @)x, HS(), )
and that
_ A© = s7(0)(H + H,)SO), (44)
in which
2
Hyy =% f & f Py P0G D g
2 Ix —yl

Making use of (31), we can rewrite (44) as
A = S7(0[Hy(9) + Hy(B) + Hu]S(). (46)

Since we are interested in the long-range effects of
the Coulomb potential, we are not concerned with
the high-momentum contributions of the Coulomb
potential. To be specific, we keep only the momentum
components of the Coulomb potential corresponding
to I < I,. This choice of cutoff will be justified later.
We can now write p in (37) in terms of the boson
operator as

09, 1) = —a®x, 1), (47)
so that we obtain
©
(c) fd3 f d’y T (x (Y, t), (48)
2(4 ) [x — ¥l
where
p = (dmyten (49)

It is worthwhile to note that, as Hg in (48) contains
only the boson operators, the quasifermion operators

are not modified; i.e.,
¢© = ¢, STOH(PSW) = Hg).  (50)

Because of this, only the bosons need to be studied.
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The boson Hamiltonian is

HO® = gO(B) + HE,, (51)
with
HY(B) = S™{t)Hy(B)S(1)

= %deX[(ﬂ@)Z + v?,VB© .VB©] + ¢ number.
(52)

To derive the new boson equation, we note the
following relations:

BOx, 1), 7%y, Dl = icx — y),  (53)
fd3yc(x - y)B©(y, = B©(X, 1),
f Pyex — POy, 0 = 7Ox, 0. (54)

The above commutation relation is due to (20) and
the relations in (54) can be derived by means of (23).
The canonical equation

a%3©("’ 0 = —i[BO(x, 1), HOP]

leads to
9 ,© © R )
—B7(x, ) == (x,t)+—-fdy—.
ot 4m Ix —yl
Then the canonical equation for 9B/0t gives
62
(r
vy LINO)
——fdy v2BO(y, 1) = 0. (56)
4n x —y|

The last term on the left-hand side shows that the
bosons at two points x and y are correlated with each
other even when x is very far fromy.

It should be noted that partial integration applied
to the integral in (56) does not give (—u202BO) because
of the long-range nature of the Coulomb potential.
To estimate this integral, we must remember that the
integration domain is the metal of finite volume
V = L3. This means the d® in (56) must be replaced
by g(y) d3 where g(y) is a function confined inside
the metal. We can approximately express g(y) by
exp (—e |x — y|) when V is large. Here e is given by

e~ 1/L. (57)

(55)

vﬁVz) BOx, 1)

The last term in (56) then gives
[03(V* — 91V BO.
Therefore, (56) becomes

2,2 2

(aa o — iV — 050, 0 = 0. (59

L. LEPLAE AND H. UMEZAWA

Thus, the energy spectrum of the boson of momen-
tum /is given by

= [ + vpl® — uPvie®/(¢* +
= (v2u? + 02D, for 1>,
= vl 1 K e. (59)

One should note that the excited energy spectrum
practically starts at the plasma frequency vou, because
I = € for excited levels. The bosons of extremely low
momentum (/< €) can, however, influence the
ground state and, as is shown later, play an important
role in the gauge transformation. The transformation
S(¢) can be computed in many ways. An easy method!®
is to diagonalize the Hamiltonian H'®’ by means of
the Bogoliubov transformation. To do this, we ex-
press the Hamiltonian Hy(B) and H,(¢) in the
momentum representation by using (12) and a similar
expression for = = dB/ot:

Hy(B) + H,(1)
2
— w B+B _ luwk
e

X (B_je "t — B,;Le"“”‘t)}.

+ P

for

(Bke—iwkt _ Bi—keimkt)

Here ¢ is introduced to take into account the fact that
the size of the system is not really infinite [see Eq.
(57)). It can be shown that H'B' in (27) takes the
diagonal form

HO» = 2 @B B, + ¢ number, (60)

where we choose S(¢) to satisfy

S™Y()B,S(t)e !
= J(loo®) (@, + vo)Be " + (@, — v)BHe ]
(61)
Here, the energy &, is given in (59).
Then, using (12), we can express B© and #© in
the momentum representation:
BOx, 1) = 3 v, 36}

1<lp

X (Bleil-x—ifin;t + B»lke—il-x+idut), (62)

2O, 1) = —i 3 0,1/(26,)
I1<lp
% (Bleﬂ,x_i,,-,lt _ B-l+-e—z'l-x+ia'xzt). (63)

To see if the boson BO still acts as a phason, we
shall examine the gauge transformation. Following
an argument similar to the one presented in Sec. 2, it
can be seen from (47) and (53) that the gauge trans-
formation is induced by the boson operator in the

10 Another way, where the momentum representation is not
needed, is to use the equation i[dS(1)/dt] = H,(0)S(t).
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following manner:
BOx, 1)~ BO(x, 1) + 1 f Bye(x — Iy, (64)

even when the Coulomb potential exists. We thus see
that BO is the phason and that the electron operators
keep the form (29), i.e.,

1) = exp (iIBOmF(¢, VBO, 0).  (65)

Let us further note that (27) remains true even when
B is replaced by BO, showing that (1/7)BO is the
canonical conjugate of total number of electrons.

[t is worth noting that the phason equations (56)
and (58) are invariant under the gauge transformation
with a uniform phase f(y) = 0 (i.e., BS — BO 4 50),
as they should be. This transformatlon is induced by
the phasons with / K ¢, showing the important role
played by these phasons.

Besides the phasons described above, there may exist
other excitations of the plasma type with | > I, corre-
sponding to the Coulomb interactions among quasi-
electrons (or “normal” electrons). Nevertheless, these
plasmons will not play any role in the phase properties
of the superconductor and, in this sense, are not of
immediate interest in this article. This justifies the
cutoff / = J; introduced in the Coulomb potential.

To see how the Coulomb effect influences the
density, we rewrite (55) in the form

2Ox, 1) = — + fday e V2 4 BO(y, 1. (66)
4 x —yl ot

Performing a partial integration, we find

7Ox, t) = §B©(x, )
2 —f | X—; yla
i 5, € ©
— = \d —B , (67
i Sy (y, 1), (67)
which gives
> 0
P70 0 = =1 2 BYx, 1)
2 ~#|x~y] 5
nu P 4 ©
&Py ——— —B%(y, ). (68
+4W )l e (y,t). (68)

The second term in (68) shows that the charge density
at a point x is influenced by the phasons in the domain
of radius 1/u [= 1/(4m)ken].

The current can be derived from (43) and (11):

i%x, 1) = v3VBO(x, 1. (69)

To prove the conservation law, we note that the
phason equation (58) implies
2
( :tz RV 4 o )VzBO(X n=0. (10)
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This relation together with (66) gives
% 7O(x, 1) = 2V2BOx, 1).

The conservation law
v.+2,0_¢
at

follows immediately from (71) because of (47) and
(69).

(71)

4., INVARIANT TRANSFORMATION!

Let us now consider the special case of gauge
transformations which leave the system invariant.
We thus assume that f(x,¢) is independent of ¢,
denoting it by f(x), and that

[N,, H] = 0.

The latter condition leads to

[arsreo 2 o5, =0,

(72)

which in turn gives

f dxf XV - j(x, 1) =

This is satisfied when Vf = 0. The invariance con-
dition, however, is still weakened when f(x) is a
slowly varying function (! K /y). In that case,

f d3Xf(X)~a% px, 1) = — f OV - ()

= -—v(szdsxf(X)VzB(X, t)a

owmg to Eq. (11) [or (69)]. The requirement that
N, = 0 implies that

[B(x), f 4yV2B(y, t)f(y)]
-v f Pyic(x — Y(y) = V(x) =0,

using the fact that f (x) is varying slowly with x. Thus,
the gauge transformation is an invariant transforma-

tion when
Vif(x) = 0. (73)

It is obvious that the gauge transformation (26)
leaves the phason equation (14) [or (56)] invariant
under the condition (73), as it should.

A simple example of (73) is given by

f(x)=a.x,
M 1In this and following sections, no © superscripts are used

because all the arguments are true whether the Coulomb interaction
exists or not.
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where a is a constant vector. This corresponds to the
following persistent current:

(0)) = vin'a,
according to (30).

The condition (73) is no longer necessary when
there is an external electromagnetic vector potential
A, since the effect of the gauge transformation of y
can be cancelled out by the gauge transformation of
A (e, eA—eA + _5f), and this leaves the system
invariant. In that case, (26) shows that A always
appears in the following combination with VB:

VB —n[dye(x ~ DA, (74)

By the same argument, we can show that the scalar

potential ¢ always appears in the combination

0 3 _
P B —fd ye(x — y)(y).

5. FINITE TEMPERATURE

The arguments in the previous section can be easily
extended to finite temperatures by means of the well-
known quantum-statistical technique,'*** ie., by
making the following replacements in expressions of
Egs. (16):

(75)

w—iw,,

(2m) f dw — ikyT S, (76)

where

w, = 2nrkgT, for bosons,

= (2n 4+ DkyT, for fermions.

Similar replacements should be performed every-
where in the computations of the previous article.! In
particular, the expansion coefficients in Eqgs. (3) also
depend on the temperature.

By (76) we obtain

kT  d% 1
2 J@mP W (0 + Ef )Mo} + EX_y)
(77a)

RT(1) =

and
IPRT(1)
_ kh'TJ~ d’k (xrds — €t)’
T2 V@) W (0l + EL )@ + Eiy)
_ I_cﬂ I d*k _ki 1 .
2 (2m)* 3m® W (wk + El )0l + Er_y)
(77b)
12 H, Ezawa, Y. Tomozawa, and H. Umezawa, Nuovo Cimento
5, 810 (1957).

13 A, Abrikosov, L. P. Gor’kov, and 1. E. Dzyaloshiskii, Zh.
Eksp. Teor. Fiz. 36, 900 (1959) [Sov. Phys.—JETP 9, 636 (1959)].
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The constant » depends on T through the relation (15),
ie., n(T) = —28A(T)[RT(0))E.
We thus find that
&’k Kk
venir) = d0ipkpT | —— —
ol (1) (T%RB (277)3 Im?
1
x> .
w (0, + Elf-p}l)(wi + Epg2)
It can easily be shown that 5*(T)v2 ~ n (T)/m, where
n(T) is the density of superelectrons. At finite tem-
perature, Eq. (39) should be replaced by
B(T) = [T + ol — wip(DE((F + AL,

where

(78)

veu¥(T) = dmwe*ny*(T)vs ~ dme’n (T)/m.

Besides these phase oscillations there can also exist,
at finite temperature, plasma oscillations of the quasi-
electrons.

6. THE GENERALIZED LANDAU-GINSBURG
EQUATIONS

In this section we derive the second Landau-
Ginsburg equation and compare the expression
obtained with the one given by Werthamer.* As our
purpose is essentially to show the simplicity of the
derivation, it is not necessary to give a full derivation
of the first Landau-Ginsburg equation. (The methods
used in the derivation of both equations are quite
similar.)

In order to simplify the notation, we replace the
function ¢(x — x’) [see (23)] by d(x — x’) in this
section. This simplification does not induce any
significant change in the results. Thus, (26) shows us
that a gauge transformation

p— eif(x,t),w

is induced by the transformation of B(x, t),
B(x,t) — B(x, 1) + nf(x, 1),
when f(x, t) is a slowly varying function of x.

Making the replacement (74) in the relation (30),
we obtain the ground-state current!

3y = vgn*(Vf — eA).
14 Combining (30) and (74), we find that
((0) = vgn? § d¥ye(x — DIVFY) ~ eA)L.

Equation (80) in the text is obtained from this by approximating
the ¢ function by the § function. The second term in the above
expression gives a Meissmer current of the form

—e’ugnzjld“’yC(X — VAW
Owing to the relation (24), this can be put in the form
—ewi(l + F(VHVIA®)

with a certain function F which should be computed from the
knowledge of the ¢ function. Note that the ¢ function has the range
of order of & = 1/l,.

(79

(80)
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To show that this is one of the Landau-Ginsburg
equations, we recall that

A = Aypypy), @1

where 4 is the coupling constant introduced in Eq. (1).
After gauge transformation, (81) becomes

A(x, 1) = (B F¥ g, VB — neA + nVf, m)), (82)

where use was made of (29) and (74).
We write (82) as

A(x, t) = 2P |A(x, 1)) (83)
It is now easy to see that (80) can be put in the form

U Ay, UAGK, 1) — A(x, DVA*(x, D]
i AP ’ ’ ’
(84)

Inserting the value of v2n?® given in (78), Eq. (84)
becomes identical to the generalized Landau-Ginsburg
equation obtained by Werthamer [see Eq. (16) of
Ref. 4].

It may be seen from (82) that |A| is practically con-
stant when A is varying so slowly that &Vf (where
&y is the coherence length) is negligible and when the
temperature is so low that the variation of F in (82)
is mainly due to the space dependence of f.

As we mentioned in the beginning of this section,
we do not give a full derivation of the first Landau-
Ginsburg equation, but only outline its derivation.
This time we are concerned with p,y,: first one has
to express y,y, in terms of the free operators (¢, B),
then perform the gauge transformation (79), and
finally compute the expectation value of the expression
thus obtained.

M=

7. VORTICES

As was shown in Sec. 4, the condition for the gauge
transformation (26),

B(x, 1) — B(x, 1) + 7, f dye(x — Yf(y), (85)

to leave the system invariant is expressed by the
condition (73), i.e.,

V¥ (x) = 0. (86)
We notice that this condition leads to
V2fd“yc(x - NSy =0, (87)

provided the system is simply connected.

The condition (86) admits a variety of non-simply-
connected solutions. The simplest solution of a
cylindrically symmetric nature is given by

S(x) = dvg. (88)
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@ is the cylindrical angle of the vector x and v is
required to be an integer in order to make the order
parameter A(x) single-valued.

Let us note that the function c(x — y) is an oscillat-
ing function of |x — y| which is practically confined
in a small domain of radius of the order of 1//; around
the point x. [/, is the cutoff momentum given by (13).]
Since f(x), given by (88), is multiply connected
around the cylindrical axes, (87) does not hold any-
more. Let us estimate how much the left-hand side of
(87) deviates from zero. To do this, we define a new
function

Ix —yl < r(x),

otherwise,

Dx —y)=c(x—y), for

=0, 89

where r(x) is the distance of the point x from the
axes. According to (89), the cylindrical axes are ex-
cluded from the domain of nonvanishing D(x — y).
Therefore, the partial integration simply leads to

v f DX — y)f(y) = f PyDx — YV ()

=0. (90)

When r(x) > 1/l,, then

f dBye(x — y)f(y) = f &yD(x — Y)f(y) (1)
and, therefore,

v dyetx = s =0, 92)
On the other hand, the above quantity is considerably
different from zero for r(x) < 1/l,, because in such a
case (91) is not true anymore. This indicates that the
persistent current

D=V [dve - w0
is conserved in the region far from the axes [ie.,
r(x) > 1/L], but is not in the region close to the axes.
Therefore, some quasifermions need to be present in
order to keep the current conservation.'® These quasi-
fermions are mainly concentrated in a cylinder of
radius of the order

ro & 1/ly = v[2A ~ &,. 94

1® To keep the conservation law we must give up the condition
V2f = 0 in the domain r(x) < 1/ly. Then, according to (74), A must
exist in this domain so that we can construct the gauge-invariant
combination A — V £ (see also Footnote 14). This A exhibits the
response of the quasifermions effects. This argument shows also
that creation of vortices requires that 2 = 1/I, where A is the penetra-
tion depth.
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We are thus led to the following picture.l6:1?
Excited quasifermions (or *“normal” electrons) form
a core of radius &,. Far from the core there exists a
persistent current (93), which is given by

(60 = bogn’Ve = b’ [r(x)] 'ep,  (95)

where eg is the unit vector in the circular direction.1®
In the intermediate region there is a mixture of
persistent current and excited quasifermions.

To complete the picture, let us note that

e fﬁ (j(x)) - ds = —evin’my, (96)

where the integration is taken over a circle of radius
R » 1/l,. The left-hand side of (96) can be rewritten

16 G. Rickayzen, Theory of Superconductivity (Interscience
Publishers, Inc., New York, 1965).

7 P, G. De Gennes, Superconductivity of Metals and Alloys
(W. A. Benjamin, Inc., New York, 1966).

18 Note Added in Proof: In the case of charged superconductors
the expression (93) should be replaced, according to Footnote (14),
by

() = v} f dPye(x — yIVF(y) — eAB)),

where f(y) is given by (88) and A(y) represents the self-consistent
vector potential. A detailed calculation of the vortex current using
this formula has been done recently by our group. In that case the
current takes the well-known form

. (0] n
B = goags Kol Jew for r» &,
An expression for the current inside the core has also been obtained.

(See L. Leplae, N. Mancini, and H. Umezawa, report of work prior
to publication.)
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as

ede-V x () = —n20§e2de-V x A,

where Eq. (80) has been used. Therefore, there appears
a magnetic field concentrated mainly in the core of
radius &,.
The total magnetic flux is"?
O = my/e. 97)
Let us close this section by noting that the result
(94) can be understood by a simple intuitive argument
based on the uncertainty principle. We have seen that
the phase

f dBye(x — PIY),

which corresponds to a vortex, is generated by the
phason B(x, t) [cf. (85)]. Since there is a cutoff J, in
phason momentum, the uncertainty principle

Ax-Al 21

leads us to conclude that the phasons cannot stay in
a region smaller than

Ax ~ 1l ~ &.

When they are confined in such a region they acquire, by
the same uncertainty principle, enough energy to decay
into quasifermions which remain after equilibrium is
established to form the core of the vortex.

19 In this article, A= 1 and c = 1.
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We investigate possible characterizations of “short-range’” interactions by means of conditions on the
total transition probability | Tyl}>. We desire to require that the total transition probability decrease

exponentially as the displacement of the wavepacket y increases. It is shown that this can only be done
for certain types of sequences of wavepackets, and a criterion is developed for selecting these “proper

X3

wavepackets. We then show for all such interactions that what is essentially the square of the scattering
amplitude is analytic, in the cosine of the scattering angle, in an ellipse which always includes the
physical region. We then compare these results with the Schrodinger potential theory and thereby relate
the type of the exponential decrease of a potential to the type of the exponential decrease of the corre-
sponding transition probability. Finally, our results are compared with similar results previously

obtained by others working on this problem.

1. INTRODUCTION

This study is concerned with a characterization of
the short-range property of strong interactions by
means of statements about observable quantities, and
with the resulting implications for the scattering
matrix. In particular, we impose conditions on the
transition probabilities related to elastic cross sec-
tions for a fixed incoming wavepacket, and show that
there is a relationship between these conditions and
the (traditional) notions of “short range” which
apply within potential theory.

It is a basic assumption of hadron physics (the
dynamics of the strongly interacting particles) that
the interactions between particles are, in some sense,
of short range. In a very intuitive sense, this means
that two particles interact only when they are “near”
each other, so that, asymptotically, a system can be
described by free-particle states. In the Schrodinger
potential theory, *“‘short range” usually means that
the interaction potential is of exponential decrease,
or faster, as the distance between packet and scat-
tering center increases. This behavior of the potential
implies certain characteristic properties of other
quantities in the theory, such as the phase shifts, the
scattering matrix, and the transition probabilities.
For example, the fact that the potential is of *“‘ex-
ponentially” short range implies that, for any fixed
energy, the scattering amplitude will be analytic in
the cos 6@ plane in an ellipse which contains the
physical region, where 6 is the scattering angle.

If we consider a more realistic, fundamental
physical theory in which the forces are not derivable
from a potential, we may wonder how to characterize

* Research supported in part by the Air Force Office of Scientific
Research, Office of Aerospace Research, United States Air Force,
under Grant No. AF-AFOSR-68-1471.

T Present address: University of New Mexico, Albuquerque,
New Mexico.

a short-range interaction. In analytic S-matrix theory,!
the existence of regions of analyticity for the scat-
tering amplitude is taken as a fundamental charac-
terization of short range.

We intend here to characterize short-range inter-
actions by a property of the total transition proba-
bility: Consider a scattering situation in which y
represents the initial asymptotic state-vector. Then, Sy
is the final asymptotic state-vector in the outcome of
the scattering event, where S is the scattering matrix.
If iT =8 — 1, the quantity ||Ty|® = ||(S — Dyl
the square of the norm of the vector Ty, is a measure
of the amount of scattering. In the following we call
this measure the total transition probability. (We call
it this, following custom, although it is not strictly
a probability. If the vector Ty is orthogonal to the
original state , it will be a strict probability.)

If the packet v stays away at all times from the
scattering center, then we expect | Ty||® to be “small.”
In particular, if we construct a sequence of packets
which stay more and more away from the scattering
center, then we expect the corresponding sequence
of transition probabilities to decrease. We may regard
the sequence of wavepackets as a probe to measure
the rate of decrease of the interaction with distance.
Because of the evidence from Lagrangian field theory
(via perturbation theory), it is natural to expect
exponentially decreasing forces even though these
forces are not derivable from a potential. Therefore,
at least for sequences which are “efficient probes,”
we expect the transition probabilities associated with
short-range interactions to decrease exponentially, as
the sequence of wavepackets stays more and more
away from the scattering center.

1 See, for instance, G. F. Chew, The Analytic S-Matrix (W. A.
Benjamin, Inc., New York, 1966), or D. Olive, Phys. Rev. 135B, 745
(1964).
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We would like to specify the relation between
“short range” and the analyticity of the scattering
amplitude a bit more fully. In Appendix A, it is shown
that if a potential is of exponential decrease? of order
b > 1, then the corresponding scattering amplitude
[which depends upon the magnitude of the incoming
(relative) momentum p and the cosine of the scattering
angle z] will be an entire analytic function in the vari-
able z, for every fixed nonnegative p; while if 4 < 1,
there will be no such region of analyticity, but rather
the boundary of the physical region will include a
singularity. If, however, b = 1, then the corresponding
scattering amplitude will be a function analytic in z
(for every fixed nonnegative p) in some ellipse with
foci +1, the size of which depends upon the type.
Therefore, in our attempts to characterize short-range
interactions which are not derivable from a potential
by an exponential decrease of a sequence of transition
probabilities, we show that this implies an ellipse
of analyticity in z for the scattering amplitude. [We
find it convenient to use the notation f(s) = O(e~*")
to indicate that f(s) is of exponential decrease of order
r and type a, in an analogy with the standard order
symbol.]

Recently there has been some interest in the
relation between the decrease of the transition proba-
bility and the region of analyticity of the scattering
amplitude. Omnes® assumed an exponential decrease
for the transition probability for a selected sequence
of Gaussian wavepackets, and he derived an ellipse
of analyticity in z for fixed nonnegative p for the
square of that scattering amplitude. Similar studies
were also carried out by Kugler and Roskies,* who
derived an ellipse of analyticity, as well as MacDowell,
Roskies, and Schroer.® By making similar assump-
tions about the decrease of the transition probability
(using wavepackets of compact support in momentum
space), Stapp and Chandler® showed that the scattering
amplitude is C” in all arguments in the physical
region, excluding Landau singularities.

In Sec. 2 we discuss whether or not certain specific

2 We say that a function f(r) is of exponential decrease of order &
if for every €>0, limexp(*>€)f(r)=0 as r— oo, while
exp (rP+€) f(r) is unbounded as r — co. If there exists @ > 0 such that

lim exp (ar®)f(r) = 0,
r—» 00

then the type [of f(r)] is the least upper bound of all such a. Other-
wise, the type is 0. [If for every a> 0, limexp (ar®)f(r)=0
as r — o0, then the type is infinite.] Obviously, a function which
decreases like some inverse power of its argument is of order 0. If
no order is mentioned, then the order will be assumed to be 1.

3 R. Omnes, Phys. Rev. 146, 1123 (1966).

4 M. Kugler and R. Roskies, Phys. Rev. 155, 1685 (1967).

5 8. MacDowell, R. Roskies, and B. Schroer, Phys. Rev. 166, 1691
(1968).

8 H. Stapp and C. Chandler, J. Math. Phys. 10, 826 (1969);
C. Chandler, Phys. Rev. 174, 1749 (1968).
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families of wavepackets are suitable for use as probes.
In Sec. 3 we derive an ellipse of analyticity for what
is essentially the square of the scattering amplitude,
based on the assumption that ||Ty*|2 = O(e~*) for
some specific families of wavepackets y°, where s is a
parameter which measures how far away that wave-
packet is from the scattering center, and a > 0. In
Sec. 4 we compare the results obtained in Sec. 3 with
the Schrédinger potential theory. In particular, we
attempt to relate the constant a [in the assumption
that || Ty*||2 = O(e~*)] to the range of a potential
V(r) = O(e™*"). We also compare the various results
which we have obtained with the results obtained
by others working on this problem.

2. A MEASURE OF THE EXTENT TO WHICH A
PARTICLE APPROACHES THE SCATTERING
CENTER

Although the problem with which we are truly
concerned is one in which there are many different
kinds of particles, each with different spins and
statistics, the essentials do not depend upon all these
details. We will, therefore, restrict our discussion to
dealing merely with one type of scalar boson. Further-
more, we only consider the case of two incident
particles, which is equivalent to the case of a single
particle (tracing out the relative motion) incident
upon a fixed target. We intend that a quite general
interaction (of short-range) may occur while this
particle is in the neighborhood of the target, so that
there may be an arbitrary number of particles after
the collision. (The quantity || Ty|? is the total transi-
tion probability into all channels.)

We take ¢° to be a one-parameter family of initial
asymptotic states ordered so that s is a measure of
their displacement from the scattering center. We fix
the normalization’ of the S matrix in the momentum-
space representation by

(T.¥")q) =fdp5(p = OTp, Q¥'(p), (2.1

where T, is the elastic portion of the T matrix. We
designate the corresponding family of transition
probabilities by

P(s) = | Ty’|I*. 2.2)

Then,
P(s) = f dp’ f dpy* (B )(p — PIA(D, 2), (2.3)

where pp’z = p - p’, and A(p, z) is the absorptive part
of the S matrix. We expand A(p, z) in the standard

? In the following, we use units such that c = 1 = A.
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partial-wave expansion,

A(p, 2) = (mﬂ“‘é @1+ DP@Ap). (24)

From the unitarity of the S matrix, we have that
0< A4(p L1
From Eqgs. (2.3) and (2.4),

2.5)

PO =43 f Cap AP, 26
where N
ip) = 2 40 [y PR 2

We note that, for every 8 > a > 0,

b
0< f dpp’fip) < 1,

because of the normalization of the wavefunction
w(p). Finally, we define our conventions so that
w(xX, t), the solution to the Klein-Gordon (or Schro-
dinger) equation, is related to its momentum-space
representation y(p) by

wix, 1) = 2m) f dpe™*@y(p) (2.8)

where w(p) is the energy corresponding to the momen-
tum p. [In the nonrelativistic (Schrodinger) case,
w(p) = p*/2m, while in the relativistic (Klein—
Gordon) case, w(p) = (p* + m?)}, where m is the
reduced mass of the particle system under considera-
tion.]

We need a method of selecting “efficient”” wave-
packets: those which always stay far away from the
scattering center. Obviously, some measure is needed
of how much of the wavepacket is in the neighbor-
hood of the scattering center for all times—a “measure
of closeness.” We will use

GIR, y] = f.f;“ fl Ll or 29)

as our measure of closeness. Then, G{R, ] is the
integral over all times of the probability, at the time ¢,
that the wavepacket is within a sphere of radius R
about the scattering center. We will take the “small-
ness” of G[R, y] to mean that the wavepacket ¢ is,
at all times, “away’” from the scattering center. There
are obviously some quantities other than G which
might have been considered as a means of selecting
“efficient” wavepackets. However, this particular
measure is rather reasonable and convenient for
actual computation with specific wavepackets. Also,
for the particular wavepackets considered in this
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paper, any other reasonable choice would give the
same results.

A relation between G and [[Ty|® can be seen by
considering a theorem proved by Cook.® If, in a
potential theory, V is the potential and H the total
Hamiltonian, both of these being represented as
operators on the Hilbert space of states, and y(1) =

e~i!H-V)y Cook shows that
2 [°) 2
< ( [Cany Vo).

The size of |Ty||* depends on both the choice of a
sequence of wavepackets and on the rate of decrease
of the interaction. In particular, if the interaction
decreases very slowly with distance, then we would
not expect ||Ty|? to be very “small,” regardless of
the choice of sequence of wavepackets. In order,
therefore, to see the dependence of ||Ty|? on the
wavepacket, we choose

V(i =C,
=0,

ITyl* = ” f ® dtey ()

r <R,

r> R
For this potential,

[ arvaon = cotr. vl

Although this is not quite the same as the expression
appearing in Cook’s theorem, we can see that if G
is not ““small,” then || Ty|? is not likely to be “small”
either.

Using Eqgs. (2.7) and (2.8), we have

GIR, y] = (271')-2J.dp’fdpw*s(p’)y)“’(p)é(w — ')

xf dxeix-(n—p’)
IxI<R
®© o 4 dp R 2.
=43 | dpp ——ff(p)f dxx%ji(xp),
=0 Jo dw 0
(2.10)

where w(p) is the energy corresponding to momentum
P, and j(xp) is the spherical Bessel function of order /.
{We note that w(p) > m, which implies that the
relativistic version of G is always larger than the non-
relativistic version.] It is convenient to take the last
expression in Eq. (2.10) as the definition of G[R, y°].
We then find (see Appendix B) that

G[R, y] < 27R(1 + 4m*R®} |p||%;

hence G[R, y] is certainly well defined for all square-
integrable wavefunctions y. These questions will be

8 J. M. Cook, J. Math. & Phys. 36, 82 (1957).
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discussed further in Appendix B. We see that G[R, »]
is a monotonically increasing function of R. Also, we
note that it is a sum over / of terms each of which is
positive, so that it can decrease no faster in s than
any of its terms. We denote these terms by G,[R, ¥°].

Omnes® considers Gaussian wavepackets of the
form

¥i(p) = (b¥m)t exp [—b3(p — k)2 exp (—is - p),
2.11)

where s - k = 0. He shows that, in potential theory,
P(s) decreases exponentially with s [for a potential
V(r) which is everywhere finite, and |V(r)| e* < C,
C = const] provided that the width & increases with
§ so that

b%k = s. (2.12)

If, instead, b is independent of s, the spreading of the
wavepacket causes it to have nonnegligible overlap
with the scattering center at very large times, even
though it had been displaced a very great distance
away from the scattering center at time ¢ = 0, as can
be seen from Eq. (2.8) of Omnes.?

The measure G[R, y] should give similar results.
By some simple inequalities, we find that

G[R, '] > Go[R, y*] > Cymb*R* d~*
X exp (—b%?) + O(R*[d°),

for sufficiently large values of d/R, where C; is a
numerical constant, and d? = s — b*%k2 However,
by insisting that the width increase with s according
to Eq. (2.12), we find that

G[R, v*] £ ConR3% exp [—sk(l — R/s)?],

for s > R, which agrees well with Omnes’ results. It
is therefore necessary to use this family of wave-
packets, a different one for each impact parameter, in
order to keep ‘““small” the probability that the wave-
packet will be near the scattering center at infinite
time.

Another interesting family of wavepackets is

yi(x) = By exp (b°p -k — ip-s), p <k,
=0, p>k, (213)
where B = (2n)~}(x/k)(sinh x), x = (bk)?, ks =
0, and y3(p) has been displaced by an amount s from
yI(p). We note that in x space this wavepacket is
extremely broad—(x?),, = co—although {(p),, and

(p?),, are well defined. We then find that, for large
values of d/R, d? = s? — b2,

GIR, 93] > Go[R, ¥3] > ($)mR®b%” d~*sinh* x.
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[See Eqs. (2.7), (2.10), and (2.13).] Again we choose
b* = s and then find that G[R, ¢}] = O(e >*-%),
0 > 0, as s (and b) tend to infinity, for fixed k.

3. SOME RESULTS FOR SPECIFIC
WAVEPACKETS

We now develop the basic results for the families
of Gaussian wavepackets given by Eq. (2.11), with the
extra condition b% = 5. Particular cases of these
results have previously been given by Omnes,® and
Kugler and Roskies.* Our basic assumption at this
point is the exponential decrease of P(s). Using Eqs.
(2.6) and (2.11), we have®

P(s) = 16m(s/mk)* e~ f (21 + DI

x f dpp*Ap)2spe . (3.1)
0

In studying the consequences of this assumption, we
work with what is essentially the Laplace transform
of P(s), namely!®

P(w) = L ® dse="(mk¥/163)tP(s)

- é:o fowdpAl(P)hz(W, D), (3.2)
where
hfw, p) = [2pk/(p* + K* + kw)**2 (3.3)

The assumption that P(s) = O(e~*) implies!! that P(w)
is an analytic function of w in the half-plane Re (w) >
—a. On physical grounds, we assume further that
there is at least one /, say /y, such that for all p, > 0

Do

[ara >0 (3.4
We now investigate the behavior of P(w) as a function
of the complex variable w, for a fixed k > 0. Under
the conditions on A4,(p) [given by Eqs. (2.5) and (3.4)],
there exists a nonnegative number a such that the
series in Eq. (3.2), defining P(w), converges to an
analytic function of w whenever Re (w) > —a, and
such that P(w) is singular at w = —a. We relegate
this proof to Appendix C since the details are totally
mathematical. It is shown there that if we define

K¥%p) = lim sup(J:ideAl(x))m (3.5

[2udeo]

9 The calculation of fi(p) for the Gaussian wavepackets may be
facilitated by the use of the standard expansion of a plane wave in
terms of spherical waves. See, for instance, Ref. 5, Appendix C.

10 This particular method for study of the exponential decrease
of a function was pointed out by Omnes in Ref. 3.

11 D, V. Widder, The Laplace Transform (Princeton University
Press, Princeton, 1946).
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and

K(p) = lif(l) [K(p)], (3.6)
then
0<a=—~ sup [2pK(p) — (p* + kYK < k. (3.7)

0<p<cwo

Therefore 2pK(p) — (p* + k¥)/k < —a, for every
p >0 and k > a. However, since K(p) is certainly
independent of k, we see that

K(p) L inf [(p® + k*)/2pk — a/2p).
k>a

By calculating this infimum, we find the useful condi-
tion
K(p)<y(p)=1—af2p, p2>a,

= p|2a, p<a,  (38)

which is the necessary condition that the total transi-
tion probability be such that

P(s) = O(e~), (3.9)

for all k > a > 0, where a is a number intended to
characterize the exponential range of the forces.
However, the converse is also true. In order to see
this, we use Eqs. (3.1), (3.2), and the standard
inversion formula for the Laplace transform to obtain

(k?/16s)} P(s)

XK
= 4se‘”‘f dpp®A( p)e‘s”gl"
0

c+io0

+ (2m‘)_1f olwes’"g1 ‘L dpA(p)hw, p),

which is valid for any ¢ > —a. In Appendix C it is
then shown that

P(s) < 4e=** 4 (16s/wk3)}
x [3(17k + ¢o)P(c) + 8k2[3)e,

for every ¢ > —a > —k. We therefore conclude that
the condition (3.8) on K(p) is in fact a necessary and
sufficient condition for Eq. (3.9) to hold.

Consider now the integral of 4(p, z), given by Eq.
(2.4), over a small interval [p — ¢, p + €] of the non-
negative real axis, i.e.,

e
dxx"24,(x).
(3.10)

By standard theorems on series of Legendre poly-
nomials,® the series converges to an analytic function
of z when z is in the interior of an ellipse with foci at

f " dxA(x, 2) = 7 § @1+ ey |
! 1=0 P

p—€

12 E. T. Whittaker and G. N, Watson, 4 Course of Modern
Analysis (University Press, Cambridge, 1962), p. 323.
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z = 41, and semimajor axis

z1(p, €) = H[K(p)I* + [K(p)P}
Let

z(p) = K2 (p) + KA(p)] 2 $ly2(p) + ¥*(p)],

where the last inequality holds since K(p) < 1. There-
fore,'® for sufficiently small € > 0,

z(p, ) > [y~2(p) + Y*(p).

So Eq. (3.8) gives a lower bound on the semimajor
axis of the ellipse of analyticity. which depends on
the momentum p, and the “range of the interaction,”
as specified by the quantity a.

1t is customary to consider, rather than the quantity
A(p, z), the quantity

A(p,t) = A[p, z(p, )], (3.11)
where
z=z(p,t)y=1+t2p?, or t=2p%z—1).
(3.12)

The variable ¢ is the momentum transfer and has the
real interval [—4p?, 0] as its physical region.}* Let
us set #,(p, €) = t[p, z;(p, €)] and 4(p) ={p[y(p) —-
y(p)I}®. It then follows from Egs. (3.8) and (3.10)
that, for sufficiently small ¢ > 0,

t(p, €) 2 fi(p) = a*[(4p — a)/(4p — 2a), p > a,
= 4a*[1 — (p[2a)2)?, p<La
(3.13)

One sees that f(p) is a monotonically decreasing
function of p such that 7,(0) = 44® and

lim ,(p) = at

p—®
[The curve 7,(p) is plotted, for a = (\/3)u, in Fig. 1.]

Summarizing, we find that the total transition

probability P(s) decreases exponentially like O(e=)
if and only if, for every p and e such that p > 0,
€>0,and p— e >0, [?+ dxA(x, 1) is an analytic
function of ¢, analytic in an ellipse with foci at —4p?

13 In fact we have this condition only when K(p) < ¥(p). If the
equality K(P) = y(p) holds, we do not have the above. Rather,
since y(p) is monotonically increasing, for sufficiently small ¢ there
exists 77 > 0, as small as one likes, so that z,(p, €) > §[y*(p + ) +
y¥p + )]. Since 7 is as small as desirable, the equation is true with
an error as small as one wants if K = y, and with no error in all
other cases. If one desires to determine the analyticity region of
‘f;’tz dxA(x, z) for larger ¢, he may decompose it into a finite sum

of similar quantities with sufficiently small ranges of integration so
that their ellipses of analyticity are easily shown to be bounded by
y(p) for some p. Then jzﬁ dxA(x, z) will certainly be analytic in
the smallest such ellipse.

14 It is customary to refer to the set of physical values which the
variable ¢ (or z) can assume as the ‘“‘physical region,” although the
set is actually only a line segment.
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Fig. 1. A comparison of our results with similar results derived
by others: the rightmost points of the ellipses of analyticity of
A(p, 1).

and 0, the size of which depends upon p and e. This
ellipse has a semimajor axis which is larger than a2,
for all p > 0, and so is always considerably larger
than the physical region.

The quantity which has been shown to be analytic
is J2+¢dxA(x, t) and not A(p, t) itself. This is all
the information contained in our assumption about
the transition probability. We may then look at
A(p, t) as a distribution. For instance, let D be the
space of all C*-testing functions of compact support
defined over [0, o) in the variable p. Then, instead
of the requirement that, for every p > 0 and for every
€ > 0, j2+¢ dxs(x, t) be an analytic function of ¢ in
the given ellipse, we could instead require that, for
every f(p) in D, |7 dpf(p)A(p,t) be an analytic
function of ¢t in some ellipse determined by the support
of f(p).}> This fact has already been pointed out by
Kugler and Roskies,* and MacDowell, Roskies, and
Schroer,® but is worth repeating here.

We would also like to show that the above argu-
ments are not solely dependent upon the nature of the
Gaussian wavepackets for their validity. In particular,
let us consider the family of wavepackets y;(p) given
by Eq. (2.13). For that wavepacket® with the change
of width characterized by 6% = s,

s 2 (2sp™ ( s )2
= - > < kr
S = o Di\siansk)” ?
=0, P>k (3.14)

From Eq. (2.6), using the Laplace transform, we have

Pow) = f “dsep) =43 | dpA(pacr. o),
(3.15)

15 The actual ellipse can be determined by the method explained
in Ref. 13.
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where
—_ __(2.p_)2l+_1 ® —ws  21+2¢ 5 —2
gw, p) = o+ 1)!J; dse "*s***(sinh sk)
= 8([ + 1)(2p)2l+12 m(w + 2mk)_2l'3.
m=1

(3.16)
The study of the function P’(w) in this case can be
carried out in complete analogy with the case of the
Gaussian wavepackets. The half-plane of analyticity
is again determined by the convergence of the series
defining P’(w) for real w. From Eq. (3.16), we find that

lim [g,n, I = [2p](0 + 260

In analogy with Eq. (3.8), we find the condition

Kpy<1—af2p, p>a (3.17)
[We obtain no information about the size of K(p) for
values of p < a.] The condition (3.17), which we note
is exactly the same as condition (3.8) (in the range
of validity) derived on the basis of Gaussian wave-
packets, would then again give us an ellipse of
analyticity for {%+¢ dxA(x, t).

p—€

4. A COMPARISON WITH POTENTIAL
THEORY

Suppose that the interaction which we have been
studying is such that for large distances it is O(e~*").
An obvious question which then arises is the relation
between the number a, in the assumption P(s) =
O(e~*), and the quantity u. It has also been explicitly
assumed in Sec. 3 that a is independent of k, the mean
momentum of the wavepacket. It is not clear that this
assumption is actually possible. In fact, we have
already found that in the case of the Gaussian
packets, we had to restrict k > g in order to maintain
this independence.

In order to study this problem more fully, let us con-
sider it in potential theory. We assume the Yukawa
potential,

V(r) = Ce*r. 4.1)
From some results of Carter, it follows that the first
singularity in t of #(p, t) will be the same as in the
first Born approximation to the 7 matrix!® (see
Appendix A for the details),

T'E(p, z) = —(2m)¥(m|p) f dre™=v) . (4.2)
Then, for our potential we have

JT'5(p, 2) = —(mCl2mp*)(L + p*f2p* — 2)7

and!®

(4.3)

AB(p) = [(mCIpQ(1 + p*12PDF,  (4.4)

18 See, for instance, M. L. Goldberger and K. M. Watson, Collision
Theory (John Wiley & Sons, Inc., New York, 1964).
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where Q,(v) is the Legendre function of the second
kind. [We use T’ to indicate T’ for the specific
potential V(r) given by Eq. (4.1).]

We may ask if the analyticity region of the above
T matrix is consistent, for some choice of a, with the
analyticity region derived for a general A(p,z) in
Sec. 3. [We note that it is permissible here to use
4A(p, z) rather than an integral over a small region,
since ,A(p, z) is itself an analytic function.] From
Sec. 3 we recall that L A(p, z) is a function of z, analytic
in an ellipse with foci at z= +1, and semimajor
axis ,z; = $(,K? + ,K?), where!’

JK(p) = lim sup LA = lim sup LAE(PT

=lim[Q)" =2, — G — DY, (49
with i

zo = 1 + p*2p* (4.6)
We therefore have that [sir;ce all the ,4,(p) = 0] the
nearest singularity to the physical region is at

2=, =25—1=1+2%p" + p*[2p".
The corresponding value of ¢ is
a(p) =2p*Gz — 1) = w4 + pfp?).  (47)

Therefore, the largest ellipse with foci at t = —4p?and
0, in which ,A(p, t) is analytic, has rightmost point
fi(p), given by Eq. (4.7). We may compare this
ellipse with the ellipse of analyticity derived in Sec. 3.
The idea behind this is that, by a proper choice of the
constant a, we may obtain an analyticity domain
which is most like that of the Yukawa interaction.

If we choose @ = 2u, which was the choice made
by Omnes,® we may then compare the two curves
obtained—namely, 7, from Eq. (4.7) for the Yukawa
potential (labeled Yukawa in Fig. 1), and 7, from Eq.
(3.13) for the choice a = 2u, p > u (labeled Omnes
in Fig. 1). We find that they agree only at infinite
momentum, while for all finite p > g, 7, (Omnes) >
f, (Yukawa).’® This would mean that our assumption,
which we desire to make for arbitrary short-range
interactions, would not be valid for the Yukawa
potential. From this we see that the obvious first
choice (a = 2u) is not suitable. In a similar manner,
we might determine that there are, in fact, suitable
constant choices for a. An example is to be seen in
Fig. 1 by the curve for 7,(p) given by Eq. (3.13) with
the choice @ = $(,/3)u, which for no value of p lies
above the curve 7; (Yukawa). We will show below

" E. W. Hobson, The Theory of Spherical and Ellipsoidal
Harmonics (Cambridge University Press, Cambridge, England,
1931), p. 58.

18 This was previously pointed out by Kugler and Roskies in
Ref. 4.
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that this choice of a is the maximum constant choice
consistent with the restriction ¥ > a. We will derive
this along with more complete statements about the
decrease of the transition probability.

We now compute the transition probability for
this particular combination of an incoming Gaussian
wavepacket, whose shape is changed according to
the formula % = s and the Yukawa potential given
by Eq. (4.1). From the analysis in Sec. 3 [see, in
particular, Eq. (3.7) and the following material], we
have that ,P(w) is analytic for every value of w such
that, for all p > 0,

Iw + k + p*k| > 2p,K(p),

where ,K(p) is given by Eq. (4.5). Therefore, if we
designate wy(k) as the (real) location of the rightmost
singularity of ,P(w), and set

q = plu, u=klu,

we have that

and wy(k) = —uvy(u), (4.8)

vo(u) = inf o(q, u), 4.9)

0<¢<wm

with

o(g, u) = (¢ — uffu + [(1 + 4! — 1ljg. (4.10)
We find that ve(u) is a monotonically increasing
continuous function of u such that

09(0) = 0, lim [ve(u)] = 2.

Moreover, for u < $./3, vo(u) = u. The graph of
vy = vy(u) is given in Fig. 2 (labeled Gaussian). (The
calculation was done numerically.) Since ,P(s) =
O(e~+swo'*n) for large s, it follows that for extremely
large values of k/u the decrease of ,P(s) is given
approximately by O(e=2*). Since vo(4) is monotoni-
cally increasing, it follows that any choice of a < 2u
would be suitable, provided that the incoming wave-
packets are restricted to large enough values of their
mean momentum k. So long as a < §(\/3)u, it is
sufficient to restrict k£ > a.

Instead of using the Gaussian wavepackets, we
could have used the family of wavepackets y:(p)
given by Eq. (2.13). From Eq. (3.17) we find that for
the Yukawa potential and these wavepackets,

wP2(s) = O(e—zks[l—,K(k)])‘

Of interest then is the coefficient of decrease [the type
of ,Py(s)] which, measured in units of g, is 2(k/u) x
[l — ,K(k)]. With u = k/u, we find that this is a
monotonically increasing function of u which vanishes
at ¥ = 0 and has limit value 2 as u goes to infinity.
In Fig. 2 this function (labeled ¢,) is compared with
the function v,(#) for the Gaussian wavepackets



2054

J. D. FINLEY 111

VO=—W0/M

1 | i [ !

u=k/u

FIG. 2. A comparison of the types of the exponential decrease of various transition probabilities.

(labeled Gaussian). We see that they are extremely
similar although for small u, the function obtained
from the wavepackets 93(p) rises more steeply, The
point to be gathered from this example is that the
particular type of the decrease of P(s) depends upon
the wavepacket for its detail, but the basic features
would appear to be somewhat the same for all. Also
on Fig. 2 are plotted the functions v,(u)—the type of
the decrease in units of y—which were assumed by
Omnes,® and by Kugler and Roskies.? We see, in
particular, that the decrease assumed by Kugler and
Roskies is consistent with the actual mode of decrease
for the transition probability obtained from the
Yukawa potential, although it is noticeably smaller
for all finite values of k/u.

It should be obvious that a choice of a as a constant,
independent of k, somehow misses some of the essen-
tial points involved. Moreover, any such choice of a
does not pick out the maximum ellipse of analyticity
for #(p, t). Another approach would be to take some
k-dependent choice of a. However, there do not seem
to be any very natural ones. It is in fact worth noting
that an assumption that P(s} = O(e***™®) does not
imply the analyticity of f2*¢ dxst(x, ¢) in the entire
region characteristic of the Yukawa interaction.
Specifically, let us assume (in the discussion of Sec. 3)
that @ = —w,(k) for Gaussian wavepackets of mean

momentum k. We then apply our formalism and
determine the required region of analyticity. From
Eq. (3.7) we have

2K(p) < plk + klp + wo(k)|p, for all p.

@.11)

Since K(p) is independent of k, we may write

0<u<oc \U

2K(p) < inf (ﬂ+ﬂ—
q

Q=

- inf [-y— +u—2y uK(uy)}),

0<y<w| U

where we have used Egs. (4.8) and (4.10). This implies

2[K(p) — ,K(p)] < - inf [v(q,u)—0 <m<f u(y, )]

1
g osu<
(4.12)

Since for every value of u, v(g, u) > infu(y, u),
0 <y <€ o, we see that the right-hand side of Eq.
(4.12) is nonnegative for every value of . It can in fact
be zero if and only if the infimum in y is taken on at a
value y,(u) = ¢, for a fixed value of g. From the prop-
erties of v(g, u), we easily see that y,(«) is monotoni-
cally decreasing, taking on the value 3,/3 at u = $./3,
and yo(u) = 0 for u < }./3. Therefore the open
interval (0, 1,/3) is not included in the range of y,(x).
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Then, for those values of g, we have that y,(u) =0
and, therefore,

2K(p) < 1 inf

gdo<u<ow

while for ¢ > 1,/3 we find that 2{K(p) — ,K(p)] < 0.
Therefore we conclude that

K(p) < ,K(p), P> 33w,
23
< (%)5 , P< MY @13)

2
(‘1—), u <13, 0<q< i3

u

Inserting this into the equations for the minimum
semimajor axis of the ellipse of analyticity of A(p, 1)
in the variable 7, one obtains

nip, &) 2 p*é + p*p?), P 2 ¥/,
> Bt — 4p*(2Tu, p < 3 3u,
(4.14)
for sufficiently small € > 0.

We find that the entire region of analyticity for the
amplitude corresponding to the Yukawa potential
is recovered only for p > 3(,/3)u. For smaller values
of p, a smaller region of analyticity is obtained—the
region which would be obtained (for those values
of p) if we assume a constant decrease of the transition
probability of value a = 3(,/3)u [see Eq. (3.13)].
Obviously, then, by this method of attack we will
never be able to derive the entire region of analyticity
characteristic of the Yukawa interaction.

In a forthcoming paper we indicate another possible
approach to the entire question of what kind of de-
crease assumptions one should make concerning the
total transition probability. We show that under those
assumptions it is possible to make a choice of a param-
eter which recovers the entire ellipse of analyticity
characteristic of the Yukawa potential, although that
choice is still not particularly natural. For quite simple
choices, however, regions approximating the Yukawa
region may be obtained.

5. CONCLUSION

It was our desire to construct a possible charac-
terization of “short-range” interactions by means of
conditions on the total transition probability. We
first showed that there exist certain sequences of
wavepackets which stay more and more away from
the scattering center such that the integral over all
times of the probability, at the time ¢, that the wave-
packet is within a sphere of radius R about the scat-
tering center, decreases exponentially. We then
assumed that, for such wavepackets, the corresponding
sequence of total transition probabilities should be of
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exponential decrease. This assumption enabled us to
show that A(p, t) [considered as a distribution in p] is
analytic in ¢ in a certain ellipse which contains the
physical region.

In Fig. 1, a comparison of the results which we
have obtained is plotted. The curves are the locations
of the rightmost point [f,(p)/u?] of the ellipse of
analyticity of A(p,t) [considered as a function of ¢
for fixed p] as a function of p/u. We compare £,(p) of
the type derived using the Gaussian wavepackets [for
the choice a = $(,/3)u] and the similar function #,(p)
for the Yukawa interaction, with the similar results
obtained by Omnes, and by Kugler and Roskies.

The above results suffer from the fact that they
depend on the type of wavepackets used and on the
existence of sufficiently “nice” sequences of wave-
packets. In a subsequent paper we indicate some
steps which may be taken to remove these difficulties.
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APPENDIX A: A REGION OF ANALYTICITY FOR
SCATTERING AMPLITUDES DERIVABLE
FROM A POTENTIAL

We will show the relation between the order of
exponential decrease of a given potential V(r) and a
region of analyticity of the corresponding elastic
scattering amplitude. Let ¥(r) be a function of r such
that the (3-dimensional) Fourier transform exists,

7(s) = (2my f dre=* V()
= (2m)Y2s f “drrsin(r)V(). (Al

We note that the Born approximation to the elastic
scattering amplitude is given by (with respect to our
normalizations)

T'%(p, 2) = —Qmy Hmip)P(p = Dfpms- (A2)
For fixed nonnegative values of p, we will consider
T'(p,z) as a function of z. It follows from some
results of Carter'® that the maximum ellipse of analyt-
icity with foci at z = 1 is the same as the corre-
sponding ellipse for the Born approximation term,

1% See W. Brenig and R. Haag, Fortschr. Physik 17, 183 (1959),
where reference is made to Carter’s thesis (Princeton University,

1952). Carter shows that when _f:’ drrV(r) < oo, for large /,
Tp) = —(m/2) [§° dssI}, [(p)V(s) + o(1) - [ dssi?, ((psy |V(s)],
where

—((2) [ dssT}, {(ps)V(s)
is just TE(p).
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T'B(p, z). We therefore examine the expression (A2)
to determine the location of the singularity of T"(p, z)
which is nearest to the physical region.

From Eq. (A1), since F(s) is an even function of the
magnitude of s only, we have that

7(s) = 2m) /s f +wdrre_""V(|r|). (A3)

We may then use standard knowledge about 1-
dimensional Fourier transforms. Let F(r) be of order
b. If b > 1, then F(s) is an entire function of s, while
if b <1, then F(s) is not extensible to an analytic
function of 5. If b = 1, F(s) is an analytic function of
s within a strip around the real axis of width 2u,
where V(r) is of type u > 0. [If V(r) is of order 1 but
type 0, then ¥(s) again is not extensible to an
analytic function of s.]

To consider T'B(p,z), we take s = p — q with
p =4¢, in Eq. (A2)—this implies s> = 2p*(1 — z). A
singularity in s therefore implies @ singularity in z,
for fixed real p. If b > 1 we see that T'(p, z) is an
entire function of z [since F(s) is even], while if
b <1, we will not have an analytic function of z. In
the case b = 1, for type u > 0, we have a region of
analyticity described by |Im [2p%(1 — P < u. For
real p, this is the interior of a parabola in the z plane,
with vertex at the point z = 1 + u?/2p%, focus at
z =1, and symmetric with respect to the real axis.
The largest ellipse which will fit in this region has
semimajor axis 1 + u2/2p?. If there exists r, such that,
forallr > r,, V(r) s of fixed sign, then the singularity
in s will be on the imaginary axis'* and, therefore, the
singularity in z will be on the real axis; and the above
ellipse will be the largest ellipse of analyticity, with
foci at z = +1. From the theorems on Legendre
series already discussed, we then have (for the case

b=1,u>0)
limsup |T(p)|"* < ,K(p)
=
=1+ up* — [(1 + @¥2p% — 1},

APPENDIX B: THE EXISTENCE OF G[R, y]

It is convenient to define our measure of closeness
G[R, ] in terms of the last expression in Eq. (2.10),
namely

@© d R .
GiR, v1=43 [dpp* L1 [ axction. @D
=0 Jo dw 0
where f;(p) is given by Eq. (2.7). Therefore,

it =3 f " pp*fAp) (B2)
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for every vector in our Hilbert space of wavefunc-
tions.

We will now show that G[R, ¢] is bounded by
C |pl|* for every fixed value of R > 0, where C is a
constant depending on R and m. In order to do this,
we will need some elementary bounds on the behavior
of the spherical Bessel functions. We consider the

function
2 2 u
s b = B (gt my
u 0

Since (x* + #®)~! is a monotonically decreasing
function of x, it follows that
x

o] 2
u, B) < 2(u® + 2*f d
8w f) <2t + )| “dx 52—

We use the integral representation® for the spherical
Bessel function,

+1
) = 4 f ap)

Jix).

sin (x[2(1 — O]}
xR - »pt
= (2 f dy sin (xy)Py(1 — 1y,
We then have that °

g, B) < (u* + B} f Tdxx(x? +
x f dyP(1 — 1y sin (xy)

2
= p(a® + B j dyP(1 — 3o
0

< pmu (w4 AL — ) = g(w, B).

Since 1 — e~** is a monotonically increasing function
while (1 — e=2¥)/u is a monotonically decreasing
function, for every p > 0,

g, f) S 2m(p* + B2, 0<u <y,

&, f) 4w (0" + Bp, p <.
The best bound is obtained by taking p = }, which
implies

gu, f) < (u, p) < dm (1 + 4p0L (B4
From Egs. (B!) and (B3),
GIR, y] < 4R 3 f " dpp¥(p)2Rp, Rm)
< 2aR[1 + 2mRYE ||yl (BS)

20 In Handbook of Mathematical Functions [M. Abramowitz and
I. A. Stegun, eds. (National Bureau of Standards, Washington,
D.C., 1965), p. 440] it is shown that

. [-]
Sin R _ 5 21+ DOpP ),
R 1=0

where R? = r? 4 p? — 2rpx, from which our representation follows
immediately from the orthogonality of the Legendre functions
Py(x).
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It follows from Eq. (B5) that G[R, y] determines
a bounded operator G, defined on the entire Hilbert

space by
(v, Gry) =GIR, y}.

If we restrict ourselves to a suitable dense set of the
Hilbert space such as the set of all continuous functions
which decrease faster than any inverse power of |p| as
{pl — o, then we have [from Eq. (2.7)] that

GIR, y1 =1 f “appt 22 f dQ f AQp*( )p(p)
R 0

x f axxt 3 @1+ DP@) D)

—4 f dy’ f dp 2 2 8(p — Py () WD)

f Bt S 3 VGl BYAxD)

=0 m=—1

_ Jdp fdp—— 8(p — P)¥*(P)¥(p)

+1
f dxx2zl“ z 21“2 syom
m'=-—1 1= m=—1
X YA BV B (xp)jixp)
= f dp’ f dpd(w — w’)w*(p’)w(p)fI |<erlx

x 20 2 Yenm(DY,

0

8

(P)jr(xp")

v

N

Ms

2 Y 2 (%)Y (B)j(xp)

0 m=—1

= (2m)” J;X‘SRdxfdp'fdpé(w — w)
x p*(p)p(p) exp [+ix - (p — p)]

-+
= 2n —3 d dx | dp’ | dpy*(p’
(2m) f_w thSR XI pf Py (p)y(p)
x exp [+ix+(p — p') — it{w — w")]

-+
=f dtf dx |p(x, D2
- |x|I<R

We therefore see that our definition of G[R, y]
agrees with the other notion given by Eq. (2.9) [which
is physically more appealing], at least on a dense set
in the Hilbert space. Although we do not give the
details here, we believe the equality (B6) actually
holds for the entire space.

APPENDIX C: RIGOROUS PROOF OF THE
ASSERTIONS ABOUT ANALYTICITY IN
SEC. 3

Remembering Egs. (3.2) and (3.3), let us write
w = u -+ iv, u > —k, v real, and define the integrals

~ P2
Pw: py.po) = f dp AP, p).
P1

¥

(B6)

(CH
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Whenever u > —k, these integrals exist for all / and
for all p;,p,€[0, 0] and define functions of w
analytic for ¥ > —k. We also define, for u > —k,

D(u; py, py) = lim sup (Pu; pr, p)T (C2)
Since, for u > —k,
hy(uy, p) > |h(uy + iv, p)l, for u, > uy,
it follows that
Ft(ul;Pnpz) 2 |1~)t(u2 + iv; py, Pl (C3)
and, therefore,
D(uy; py, ps) > D(up; py, po), forall u, > uy.
(C4
Also, since
hy(u, p) < ho(u, p)lk/(k + W, (Cs)
it follows that
D(u; p1, ps) < D(u; 0, 0) < k(k + u). (C6)

From the definition of D(u,; 0, o), it follows that the
series defining P(u,) converges for every u, > —k
such that D(u;; 0, 00) < 1. Because of the inequality
(C6) such a u; certainly exists. Then, from Eq. (C3),
we see that the series converges to a function P(w)
analytic in the half-plane Re (w) > u,.

In order to specify more fully the properties of
D(u; 0, ), let uy, > u; > —k and p, > 2k. We then
have that

hy(uz, p) < ho(us, p)(2k/p0)2l, P2 Do,

and

hi(us, p) < hius, p)[
1t follows that

ﬁt(uz; 0, 0) < ﬁz(uﬁ 0, Po)[

po + kik + u) 7+
2 :I s S pO .
Do + k(k + uy)

pg + k(k + ul)THz
s + k(k + uy)
2k\2
+ (—) f dphe(uz., p),

Do
from which

D(uy; 0, o)
2 2 k 2
< sup {(2—]() ; [”——~——‘; + Mkt ul)} D(u,; 0, 00)}.
po/ Lpo + k(k + uy)
(&)
Since p, can be selected arbitrarily large, we conclude

that D(u;; 0, 00) > D(u,; 0, o) unless D(u;; 0, o) =
0, in which case the two are equal. As a result, we may
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now uniquely define the number a as follows:

(D) If D(u; 0, ©) > 1 for some u > —k, then a is
the unique solution of the equation D(—a; 0, ) = 1;

(2) K D(u; 0, 0y < L forallu > —k, thena = k.
It follows, therefore, that for u > —a, the series in
Eq. (3.2) converges to a function P(w) analytic in
Re (w) > —a.

We must now show that P(w) is singular at w = —a.
We first consider the case a < k. If P(w) were analytic
at w = —a, then P(w) would be analytic in the disk
(w— 1] <1+ a+ 24 for some sufficiently small 9,
which we select such that ¥ > a + 6 > a. We would
then have that

%(—1 .

=0

Flma—0) =S (—py L e+ L o
ni

Since
(—=D"R"(1, p) > 0,

we can invert the order of summation and obtain

i 8)"

1=0 n=0

P(—a —8) =

x f wdpAz(p)(—l)"hin’(l, »)

Ms

P{—a —4;0, ©0) < w0,

=0

However, since

lim sup [P(—a — 6;0, ©)]"* = D(—a — 4,0, o)

=

> D(—a;0,0)=1,
this is an absurdity. To settle the case a = &, we note
that
(=1)"P™(©0) > (—1)"P;"(0;0, c0) > 0

for any I Let us select / = [, so that Eq. (3.4) holds.

Then
- o 2pk
By(w: 0, o) = f dpA,o<p)( 4

2lp+2
p? + k(k + w))

is analytic for Re(w) > —k, but obviously not
analytic at w = —k. It follows that

lim sup [(1/n!) |P{7(0; 0, oo)|TV/" = 1/k

n= o0

and, therefore,

lim sup [(1/n?) POV > 1/k.

n~*aw

FINLEY m

Since P(w) is analytic for Re (w) > —k, we can
conclude that the point w = —k must be a singularity.

We should now like to have a simple condition
which determines the number a. Since

Piu;0,p + € = Pyu;0,p) + Pi(u; p,p + ©),
it follows that

D(u; 0, p + €) = sup [D(u; 0, p); D(u; p, p + €],

(C8)

from which, in particular, D(w;0,p) is a non-
decreasing function of p. For any p > 0, we have

Bu;p,p + € < Pfu; p, o)
< (k/py? f dp'ha(u, ),

from which D(u; p, p + €) < (2k/p)?, for any € > 0.
Only the case when D(u;0, ) > 0 need be con-
sidered. It then follows that D(u; 0, p) = D(u; 0, oc)
for all p > 2k/[D(u; 0, 0)}%. Let p, be the greatest
lower bound on all numbers p for which D(x; 0, p) =
D{u; 0, c0). We should note that [for D(u; 0, o) # 0]
Po > 0, since

D(w; 0, p) < [2/(k + ] lim sup ( f dqu)

= [2p/(k + w)]*.
It then follows from Eq. (C8) that

D(u; py — €, py + €) = D(u; 0, o0).

Hence,

lim D(u Po — €, Do + €) = D(u; 0, ).

E—’O

However, for all p and e such that p — ¢ >0,
D(u; p — e, p + ¢) £ D(u; 0, o0), from the definition
of D. Therefore,

D(u;0, ©) = sup [hm Dlu;p—e, p+ e)} (C9
V<p<oo €—>0

We then note that

&p+e)

. . pte 1/
= lim lim sup (f dx A, (x)h,(u, x))

lim D(u p -

ot

et 1o
pte 1/1
= hy(u, p) llm lim sup (f dxA;(x))
e—-v() = p—€

= hy(u, p)K*(p),
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from which
D(u; 0, c0) = sup [2pk/(p* + k* + ku)*K*(p),
0<p<o

(C10)
where K(p) is defined by Eq. (3.6). If we now take
into account our previous results on the relation
between D(u; 0, <o) and the half-plane Re (w) > —a,
in which P(w) is analytic, we obtain the very simple
result [stated in Eq. (3.7)],

a = —sup [2pK(p) — (p* + kM)/k].

0<p<ow

To show the converse result, we start with the
equation obtained from Eqgs. (3.1), (3.2), and the
standard Laplace transform inversion formula:

(mk3/16s)tP(s)
= 4se‘s’°f0 dpp*Ay(p)e*"1*

c+iw

+ Q@) f aver 3 f dpALD)hw, p),

valid for any ¢ > —~a. Since
f dppon(p)e—s,)z/k S (ﬂ'k3/1653)%,
0

it suffices 10 show that the second term is O(e®),
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¢ > —a > —k. We have that

¢+io0 0 o0
f dweswg1 L dpA(p)hy(w, p)l

€—i

<erl f dp APy (e, p)

-+
xf dx(2pk)? |p® + k(k + ¢ + ix)|™®

— ke 3 f dp(p* + K + k) Aphite, p)

0 ak
< (1K + 9= S f dpAp)he, p)
1=1,/0

B o o 2 k)4
ke fdh_ D P L

+ eL§14kP12(CP)(p2+k2+kc)3

< 7(17k + c)e[P(c) — Py(c)]

+ 2mie | “dppt 3
4k =0

< 7(17k + c)e®P(c) + (16k%3)e.

Therefore, dividing by (7k?/16s)t, we have that

P(s) < de* + (16s/mk3)
X [3(17k + ¢)P(c) + 8k2[3lets, (Cl1)

for every ¢ > —a > —k; ie., P(s) = O(e=®), for all
k> a.
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In the preceding paper [J. Math. Phys. 10, 2047 (1969)], we investigated possible characterizations of
“short-range’’ interactions by means of conditions on the total transition probability || Ty|/? which were
valid only for certain types of sequences of wavepackets. In this paper we generalize the assumption on the
transition probability so that it will apply to an arbitrary wavepacket. We do this by utilizing a measure
GI[R, ] of how much of a wavepacket y is within a sphere of radius R about the scattering center at all
times. We then characterize a “short-range’’ interaction by the existence of a positive constant 4 and
positive functions B(p) and C(p) such that for all R > 0,

[ Tyl* < AGIR, 9] + (C(p)e~RE®),, .

We then show that for such interactions the square of the scattering amplitude is analytic, in the cosine
of the scattering angle, in an ellipse the size of which depends upon B(p). We compare our results with
the similar results obtained by the method in the preceding paper and show that these new results much
more closely approximate the behavior of the Yukawa interaction.

1. INTRODUCTION

In a previous paper (I) we showed that, if one uses
certain special sequences of wavepackets which have
the property that they stay more and more away from
the scattering center, it is possible to require that the
(corresponding) sequence of total transition proba-
bilities decreases exponentially with distance from the
scattering center. It was then shown that the existence
of certain analyticity properties of the absorptive
part of the § matrix is equivalent to this assumption,
and that these analyticity properties are similar to
some of those the S matrix has in the ordinary
Schrodinger theory of “short-range” potentials (those
which decrease exponentially or faster with distance).
It was therefore suggested that this type of decrease of
the total transition probability might be used to
characterize “short-range” interactions in a theory
which does not lend itself to potentials. However, the
fact that the equivalence of the decrease of the transi-
tion probability and the analyticity properties of the
S matrix could be shown only for certain selected
sequences of wavepackets makes this a rather ineffi-
cient characterization.

2. DEFINITION OF THE MEASURE OF
CLOSENESS

In this paper we show that there exists a generaliza-
tion of the above notions applicable to arbitrary
wavepackets. In order to do this, we use the notion
of a measure of closeness introduced in I. It was

* Research supported in part by the Air Force Office of Scientific
Research, Office of Aerospace Research, U.S. Air Force, under
Grant No. AF-AFOSR-68-1471.

t Present address: University of New Mexico, Albuquerque,
New Mexico.

seen that there was a need for a measure which would
determine how close a wavepacket is to the scattering
center. Since, in fact, any wavepacket will have some
overlap with the scattering center at most finite times.
the probability at some time ¢ that the packet is
within a sphere of radius R, centered at the scatterer,
is a realistic quantity which could be used. Moreover,
since the scattering process relates an event at a time
in the far past with an event in the far future, all times
are pertinent to the scattering event. Therefore we
introduce the quantity

GIR, ] = f i fl T T CRY

as a measure to determine that portion of a wave-
packet that is ever “near” the scattering center.

As in I, we consider a scattering situation in
which y represents the initial asymptotic state and
Sy the final asymptotic state, where S is the scattering
matrix. If iT = .§ — 1, then || Ty|?, the square of the
norm of the vector Ty, is a measure of the amount of
scattering, which we call the total transition proba-
bility. In the momentum-space representation we fix
the normalization of the § matrix by

(To)@) = f dpé(p — OT.(p Qv(®)  (2.2)

and
I Tl® =fdp’ f dpy*(p")y(p)o(p — p)A(p, 2), (2.3)

where T, is the elastic portion of the T matrix,
pp’z=p-p, and A(p,z) is the absorptive part
of the S matrix. Expanding A(p, z) in the standard

2060
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partial-wave expansion, we have

A(p, 2) = (wpz)—’lﬁo @ + DP)Ap). (24)

with 0 < 4,(p) < 1. If we also set

=12 - j 40’ j QY P IDPD)| s (25)

we have

it =43 [ “artaeye. 26
Lastly, we define B
A(p,t) = A(p, z(p,t)), wherez =1 4 t/2p

In an appendix to I, we showed that if we define
the measure of closeness as

2.7)

@0 © d . R .
GIR, w]E4Zf dpp‘f—gfz(p)f dxx*y(xp), (2.8)
1=0Jo do 0

where j,(u) is the spherical Bessel function of order /,
then G[R, y] < 27R(1 + 4m*R®? |p|2, and, at least
on a dense subset of all square-integrable wavepackets,
this definition is equivalent to the one given by Eq.
2.1.

3. SHORT-RANGE INTERACTIONS

We surmise, “naively,” that a transition probability
should consist of a portion near the center and another
part describing the interaction of the packet with the
“tail” of the interaction. For the ‘‘short-range”
interactions which occur in hadron physics, this
latter part may well be expected to decrease exponen-
tially with distance. Since the notion of “short-range”
is not completely defined in the absence of potentials,
we can utilize the existence of such a relation as a
characterization of a *‘short-range” interaction. We
would like to explore the possibilities of an upper
bound on the transition probability, which would
hold for all wavepackets. Therefore we assume that
for every interaction of ‘“‘short-range,” there exist
positive functions B(p) and C(p) and a positive
constant 4 such that, for all wavepackets,

ITy)® < AGIR, ] + (C(p)e *F™),, R >0, (3.1)

where the notation (f(p)), denotes the expectation
value of the quantity f(p) in the state determined by
the wavefunction w(p). Our purpose then is to deter-
mine what constraining relations must exist, if any,
between the quantities 4, B(p), and C(p), and a given
interaction of “‘short-range” in order that Eq. (3.1)
may be satisfied for all wavepackets and for all
R > 0. We see immediately that R = 0 implies that

0 < ITyl* < (C(p)y -
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It will be more convenient to study Eq. (3.1) in
terms of the partial-wave decomposition. From Egs.
(2.6) and (2.8), we have

1] o0 2d R 9.2
4;{) L dppzfl(p)[Ap d—f) L dxx*3(xp)
+ 1C(p)e BB — Al(p)] >0, (3.2)

for all wavefunctions p(p) and for all R > 0. Since
Sfu(p) 2 0, it will suffice to study the quantity in the
bracket, which should be nonnegative for almost all
p > 0 and for all /. Since 4,(p) is independent of R,
we write

A(p) < inf |:Ap f dxx*j%(xp) + lC(p)e—RB(m)]
R

3.3)
Setting o = Rp/(l + 4), we define

92 (14 4| anxtis + v
+ic(p)e—a(l+i')B(D)/p’ (34)

Hfa, p) =

from which
l(p) < lnf Hl(aa P),

<a<oo

3.5)

for almost all p and all 1.

To determine the approximate location of the
minimum of H,(«, p), we first look at only the first
term. We have that,! for o > 1,

I+ 1y f "dxx(1 + D)

>+ 1) f X3 + D]

(+ DUl + DPF

K

4

SLetraya + b, as 1o oo,
87

However, the other term in H(«, p) is less than
1C(p)exp [—( + $)B(p)/pl, for a > 1, which is
certainly much smalier for large /. Therefore, if «, is
the value of « for which the minimum of H(«, p)
occurs, we see that, for very large /, «, < 1. Differ-
entiating H,(«, p) with respect to «, we find that «,
is the smallest positive solution of the equation

4A ek U B + Ha)

= BC(p) exp (M),

! The spherical Bessel function is such that j,(x) = (7/2x)],,3(x).
G. N. Watson, A Treatise on the Theory of Bessel Functions (Uni-
versity Press, Cambridge, 1962), 2nd ed., p. 232. Watson shows that
Ji) = 3¥T@2 1 4 o).

(3.6)
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since xj;(x) is monotonically increasing for x < 7 + 1.
We then desire to determine the properties of «, =
o,(p) as [ becomes arbitrarily large. To do this, we
first note some standard properties of Bessel functions.
Watson? shows that, for 0 < z < 1,

J,(v2) = (v2)" exp [(1 — 25 — V]

x {exp MWD + (1 — 2L+ (1 — 2}
where ¥, = O(z%2(1 — z%)~%). It follows that
S+ Dz

= [4( + DP2(1 — 2211 + (1 = 2

x exp [(21 + 1)1 — 2%}
x [1 4+ 0E3(1 — 257 hy),
from whence

. [44 d ;
fim |22 0+ 172430 + D7)

(3.7)

1/(214+1)

— o
_zepd =20 oy o0<z<
1+ (1 — 23
Therefore, since «, < 1 for large /, it follows from
Eq. (3.6) that v = lim «; is the unique solution of the
equation e

exp [—vB(p)f2p] = h(v), 0<v<1; (38)

ie., for 0 < v < 1, v = v[B(p)/2p] is uniquely deter-
mined by the above equation, and v = lim «; as / — co.
Hence, v is independent of A, and of C(p), when 4 > 0,
C(p) > 0. We note that A(v) is a monotonically
increasing, convex function of v such that A(v) > v.
In addition, A(0) = 0, and A(1) = 1.

We may now consider H,(«,;, p) and determine the
restrictions which it places on the partial-wave
amplitudes A4,(p) by way of Eq. (3.3). We first note
that

Hy(a,, p) > 1C(p) exp [—( + HuB(p)Ip] > 0.
Since 0 < 4,(p) < 1, we can always pick C(p) so that
the inequality (3.3) is satisfied for any finite range of
values of /. We need therefore only to determine the
form of H,(«,, p) as / becomes arbitrarily large. We

21g (z)

use
2lg'(%) 0(%)}

for sufficiently smooth functions f and g, where g is
monotonically increasing. Via Eq. (3.7) we see that

2
f dyf(y)emg(y)
0

f e+ DY)
0
= (1 — a3 32! + 1)7*[h(a) P!
x [1 + 0031 — a2y ).
2 G. N. Watson, Ref. 1, p. 227.

J. D. FINLEY 1

Therefore, using Eq. (3.6), we have that

Hy(e,, p) = $C(p) exp [—(I + %1)“13(17)/1’]
x [1 4+ a1 — «3)=B(p)/2p]

x [1 + o731 — o3y (3.9

We see that the quantities H,(«,, p) decrease approxi-
mately like an /th power of a number less than unity,
for sufficiently large /. Therefore, in order for the
inequality (3.3) to hold, the 4,(p) must be bounded
by an /th power of a number less than unity. [We
recall that this is indeed the case for the 4,(p) deriv-
able from the Yukawa potential; in fact, it is shown
in I that this is true for all A4,(p) derived from a
potential V(r) = O(e=*"), u > 0.] More precisely, if
the A,(p) are continuous,

K(p) = lim [4,(p)]"*" < lim [H (e, p)]*' = h(v);
[ 2ndv} ] (310)

i.e., the requirement on the interaction made by the
inequality (3.1) is K(p) < h{v[B(p)/2p]}, for all p2
under the assumption that, for a given interaction,
there exist quantities 4, B(p), and C(p) as specified
above.

We now proceed to show that such functions do
actually exist, for a given interaction of “‘exponential
range.” Let A,(p) be specific given functions for a
specific interaction (0 < A4,(p) € 1) such that the
corresponding K(p) exists and is less than unity, for
finite nonnegative values of p. We may then define
a function B(p) [using Eqs. (3.8) and (3.10)] by the
equation

K(p) = h{v[B(p)/2p]}. G.11)

Now let B.(p) = (1 — €}B(p). Since h{v[B(p)/2p]} is a
monotonically decreasing function of B(p)/2p (see the
discussion of this function in the Appendix), it
follows that K(p) < h{v[B.(p)/2p]} and that, for
sufficiently large values of /, 4,(p) < H,(«;, p), where
this o, is the one corresponding to B.(p). Since we are
still free to choose¢ the function C(p), we choose it so
that the inequality (3.3) is satisfied for “small”” values
of /, which is obviously always possible, since for any
given p there is only a finite range of values of / for
which this needs to be done. We note that any
reasonable choice of the constant 4 will do, such as m.

From the above we see that the function B(p)/2p is
just the least upper bound of all the functions B.(p)/2p
which satisfy the inequality (3.1) for a given interaction
and some proper choice of C(p) and 4. Let us set

3 If the A4,(p) are not continuous, thren A4,(p) is to be replaced by
the function

Afp) = lim )72 7€ dxd().
e—0
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B = B(K) such that B[K(p)] = B(p)/2p. We may then
study S = B(K) as given by Egs. (3.8) and (3.11),
namely

e = h(v) = K,
which implies

B =v'log K™ (3.12)

We note that (see the Appendix) the main features of
f = P(K) are that it is a monotonically decreasing
function of K such that lim 8(K) = oo as K — 0, while
B(1) = 0. If we are given a specific interaction, we will
then know K = K(p), which would allow us to deter-
mine B{K(p)}—we could then determine B = B(p). A
particular K(p) which is of considerable interest is the
one corresponding to a Yukawa potential. In T we
show that for every scattering amplitude derivable
from a potential function V(r) = O(e*), u > 0,
where V(r) is of constant sign for ali r > ry > 0, the
corresponding function K(p) = ,K(p),

K(p) =20 — (22~ DY, with zy = 1 + u¥2p"
(3.13)

which is the function derived from the Yukawa
potential (see I). There is also good reason to believe,
from Lagrangian field theory, that every interaction
does indeed approach that derivable from a Yukawa
potential at very small values of the momentum.
Therefore, using the equations in the Appendix and
setting ,B(p) = 2pB[,K(p)], we find that ,B(p) is a
monotonically decreasing function of p with the
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following asymptotic behavior:

B(p)u = 2e(ufp) log (up)1 + O(p*[u?)],

for p near 0, and

BP)u =2+ Bulp)t + O(ulp), for p— .

The function ,B(p)/u is plotted as a function of p/u
in Fig. 1.

It is now our intent to use the upper bound on
|| Ty, given by Eq. (3.1), for a realistic theory of the
interactions of elementary particles, in which there
are no potentials from which to derive the interactions.
We can use the inequality (3.1) to characterize an
interaction of “‘exponential range,”” or ‘“short range.”
We would like to have a universal function B(p) such
that, for proper choice of 4 and C(p), any interaction
of “‘exponential range” would satisfy Eq. (3.1). Since
we know that for any interaction such that K(p) < 1,
there does indeed exist such a function B(p), dependent
on the choice of the interaction, we merely need to
know if these functions B have an upper bound. Since
we believe that the interaction should be similar to
the Yukawa interaction for small values of the
momentum, it would follow that in the range of small
p we must require B(p) < ,B(p).

Since we suppose that our interaction decreases like
O(e™*"), a possible choice is B(p) = 2u < ,B(p). This
choice is quite simple and natural and agrees quite
well with ,B(p) for very large momenta. However,
since ,B(p) — o as p — 0, this choice disagrees quite

| T T T | T | 1 I
al— -
- -1
61— -
B(p)/u )

Fig. 1. The function
+B(p)/u for the Yukawa al —
potential.
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strongly with the result from the Yukawa potential
at small momenta—and it is just at small momenta
that we expect the interaction should surely agree
with the Yukawa interaction,

4. ANALYTIC PROPERTIES OF THE
SCATTERING AMPLITUDE
We will first determine the region of analyticity for
A(p, t) implied by the choice B(p) = 2u, and will
then return to the questions of the behavior of B(p)
for very small momenta. We may therefore suppose
that, for all interactions which “decrease like O(e~*"),”

ITyl* < AGIR, ] + e *XC(p),.  (4.1)

It then follows [from Eqgs. (3.8) and (3.10)] that for
every such interaction,

K(p) < &7 = h(v). (4.2)

In T we showed that A(p, 1) is analytic in ¢ for every
fixed p > 0 in an ellipse with foci at —4p? and 0,
and rightmost point ¢, > f;, where

Hi(p) = [p(h — k) = [2p sinh (uu/p)l*, (4.3)

where, as in Eq. (4.2), v is determined by e*#/* = h(v).
The fundamental feature of #,(p) is that it is a mono-
tonically increasing function of p such that

lim f,(p) = 4u®.

P—>©
Approximate formulas for 7(p) are given in the
Appendix. The function #(p)/u® determined by Eq.
(4.3) is plotted versus p/u in Fig. 2 (labeled B = 2u).
We see that 7; always lies below the corresponding
curve for the Yukawa potential, while it approaches it
for very large values of p.

On the other hand the above curve for 7, deter-

mined by the condition B(p) = 2u, gives altogether
too small a region of analyticity for very small

oy 1T T T IR RREARL T VT 1T
1
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t,/u?
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F1G. 2. The rightmost points of various ellipses of analyticity
of A(p, 1).
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momenta. The reason for this has already been
mentioned. Let us investigate the possibilities of
another choice for B(p) which would overcome this
difficulty. From Eq. (3.13) we see that a simple func-
tion, which would approximate ,B(p) for both large
and small momenta and still remain everywhere
smaller, would be B(p) = 2u(1 + u/p). Repeating
the above analysis for this case, we find that the
corresponding #;(p) is a smooth function of p with one
minimum such that lim 7,(p) = 4u® as p — o, as
before, while for very small momenta (see the Appen-
dix) we have that

h(p)lp* = (ep[2p) log (ep*2uP)]*[1 + o(p)],
for p near zero.

This function 7,(p)/u? is plotted versus p/u in Fig. 2
[labeled B = 2u(1 + 1/g)]. We see therefore that by
simulating the behavior of the actual Yukawa func-
tion ,B(p) [i.e., by causing our choice of B(p) to
become infinite as p — 0], we can derive a region of
analyticity which more closely approximates that of
the actual Yukawa interaction.

It should be noted at this point that, if we actually
assume B(p) = ,B(p), we will acquire the full region
of analyticity of the Yukawa interaction. That is, if we
assume that a characterization of an interaction of
*““exponential range” is that for all R > 0,

[Tyl < AG[R, y] + (C(p)e BB

then it follows that all such interactions are such that
the squares of their amplitudes A(p, t) are analytic in
an ellipse at least as large as the ellipse corresponding
to the Yukawa interaction. We should recall that
this was not the case in the study in I, where only
specific sequences of wavepackets were used. In that
case, we showed that, if we actually assumed that
P(s) = O(e*™) for all appropriate interactions, then
this assumption only implied that the corresponding
quantities #A(p, t) were analytic (as distributions) in
an ellipse, which for small momenta was much
smaller than the ellipse of analyticity of the Yukawa
interaction. In addition, because of the extreme
“smoothness’’ of the Gaussian wavepackets, we were
only able to show that for every fixed p and every
€ > 0, {2+< dx#A(x, t) was an analytic function of ¢ in
a certain ellipse. However, in the present case, because
our results are true for arbitrary wavefunctions, we

have that, at least, ( p, t) is an analytic function for

every fixed p, where A( p, t)is the quantity constructed
from the functions

Ay(p) = lim %e_IJ
€—0

p—

pt+€

dxA(x).
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[See Ref. 3. We note that the functions 4,(p) differ
from the functions 4,(p) at most on a set of measure
zero.] In particular, if the functions 4,(p) are con-
tinuous, then A;(p) = 4,(p), and so A(p, 1) is itself
analytic in ¢, for every fixed p. In the method using
only specific sequences of wavefunctions, we showed
that there were continuous functions A4,(p) satisfying
the necessary requirements, but such that only the
corresponding function [7*+¢ dxA(x, f) was analytic
in t—i.e., not A(p, t) itself.

5. CONCLUSIONS

It was our desire to construct a possible character-
ization of ‘‘short-range” interactions by means of
conditions on the total transition probability. In
this paper, we generalized the notions in I to arbitrary
wavepackets. We found that it is indeed possible to
characterize ‘‘short-range” interactions by the re-
quirement that, for every such interaction, there exist
a constant A > 0 and positive functions B(p) and
C(p) such that

ITy|? < AG[R, y] + (C(p)e BE®y,, forall R > 0.

It is not totally clear how to pick thefunction B(p) > 0;
however, the function ,B(p), obtained by considering
the Yukawa potential, should serve as a guide,
especially for small momenta. This method gives
information about A(p, t) (almost everywhere in p),
rather than merely as a distribution in p.

In Fig. 2 is plotted a comparison of the results
which we have obtained. The curves are the locations
of the rightmost point [#(p)/u®] of the ellipse of
analyticity of #(p, t) (considered as a function of ¢
for fixed p) as a function of p/u. We compare #,(p) of
the type derived with the Gaussian wavepackets (for
the choice @ = §(1/3)u), f(p) derived with the choice
of B = 2u, and #(p) derived with the choice of B =
2u(1 + pfp), with the similar function #,(p) for the
Yukawa interaction.

We would also like to say that the particular form
of the inequality [Eq. (3.1)] which we have chosen
to bound the total transition probability is not neces-
sarily the best, but it has merits of simplicity. It could
be pointed out, however, that the form of the func-
tion B(p) is unchanged if, instead of G[R, ], we use
some similar integral—for instance,

+o0
f dt f dxf(x) |p(x, D)3
—00 XlSR

where f(x) is an everywhere-positive weighting
function satisfying some restrictions on its decrease
(or growth), and such that the integral still continues
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to exist. In particular, if f(x) is bounded above and
decreases no faster than some fixed inverse power of
x (for x > 0)—f(x) should not be singular at x = 0—
then f(x) would be suitable as a weighting function in
the above integral. We have considerable freedom in
our choice of the positive function C(p).

It should also be pointed out that it is desirable to
broaden the type of bound above so that it would
include information concerning general displace-
ments—timelike, for instance—of the wavefunctions
as well as spacelike ones. (This might be done, for
instance, by considering a function G,[R, ] where
the time integration is performed only up to some
fixed time ¢, rather than infinity.) Such types of
bounds could presumably be used to obtain informa-
tion about the analytic behavior of the scattering
amplitude in all its variables simultaneously.
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APPENDIX: EVALUATION OF #,(p) FOR A
YUKAWA POTENTIAL

We first study
h(v) = [vexp (1 — )H/[1 + (1 — o9} (AL

We see immediately that he [0, 1] for ve [0, 1],
h(0) = 0, A(1) = 1, and A(v) > v. Furthermore,

20
One easily obtains the following formulas:
h(v) = lev[l — }v? + O(¥%)], vnear0, (A2)
which implies
v =2(hle)[1 + (hle)* + O(hY)], hnear 0, (A3)

h@) =1~ 31 = )% — {1 — B + O((1 — o*),
(A4)

v near 1,
which implies
v=1-=3301 =¥+ 0 — h)*), h near 1.
(AS)

We may then use these formulas to study 8 = 8(K).
From Eq. (3.12), we have that

pv = log K1 = log A2

Therefore, from Eq. (A3), we have that
B = 4(e/K)(log K1 — (Kle)* + O(KY),
K near 0. (A7)

(A6)
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Similarly, from Eq. (AS5), we have that
g = (1= K){l+ B30~ K+ 00 - K},

Knear 1. (A8)
Since
dh
720
we see that
dp
T <0.

Therefore, § = f(K) is a monotonically decreasing
function such that (1) =0 and lim $(K) = w as
K—0.

Let us now consider the case where K is taken to
be ,K [the K(p) corresponding to the Yukawa
potential]. It follows from Eq. (3.13) that

Kp)=1—=ulp + O@¥p?, for p— o,
while
K(p) = p¥u? + O(p*[u*), for p near 0.

Since ,B(p) = 2pp[,K(p)], we see that for the Yukawa
potential

B(p) = 2e(p?[p)llog (u/p)I[1 + O(p*/u?)],

for p near 0, (A9)

and
WB() = 2u[l + 3Gu/p)? + O(ufp)l, for p— oo
(A10)

For a given choice of B(p), we may compute K and

the corresponding 7,.
From Eqgs. (2.7) and (3.13), we have that

= [p(K* — K"

J. D. FINLEY 11

Then, from Eq. (A6), we have that

f, = 4p?sinh® v = 4p?sinh® (vB[2p). (All)
If we choose B = 2u, we have

£, = 4p? sinh® (vu/p).
Since v is bounded,
i = uo*[l + O(*p?)], as p— oo.

From Eqgs. (A4) and (A8), we have

v=1—13P% + O(B%), P near0. (Al2)
Therefore,

h= QuPll — Gulp + O(up)), as p— oo
(A13)
Again, for small p, Eqs. (A2) and (A7) imply

_log [log (28/e)] + O(log /3)}’

log (28) g
(Al4)

[log (2ﬂ/e)]{ 1

which implies
f, = [(ef2u) log (ep/2w)13[1 + o(p)], for p nearO.
(A13)
Lastly, if we choose B = 2u(l + p/p), we have,
from Egs. (Al1), (A12), and (Al4),
fy = (QuPll — Gulp) + Oulp)], as p— oo,
(Al16)
and
h = p*[(ep/2u) log (ep*2uM]*[1 + o(p)],
for pnear0. (Al7)
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The formalism developed previously for scattering of wavepackets is applied to the N + 8 sector of
the Lee model. A single analysis suffices to discuss both the stable and unstable case. The rate at which
N and 6 particles are produced and the number of V particles produced are calculated as a function of
time assuming that the incident wave is initially a semi-infinite, plane-wave train. An unstable V-particle
state is constructed from the | N, 8) state by requiring agreement with the scattering analysis. Its depend-
ence on the production process is explicitly shown. The state can be made independent of the production
process by requiring normalization. The time dependence of each channel is also calculated for this case.
It is shown that both the unstable and stable V-particle states can be generated from the mathematical
V-particle state, the only difference being the location of the pole which describes the resonance state or

the bound state.

I. INTRODUCTION

The Lee model, which can be solved exactly for
many of its sectors, is close enough to reality so that
its investigation gives insight into real physical systems.
The N + 0 sector is of interest because not only can
the N and 0 particles have a bound state (the V
particle) which leads to a discussion of mass and
coupling constant renormalization, but they also can
have resonant scattering states, which leads to a dis-
cussion of unstable states.

The bound-state problem is discussed extensively in
several text books! and is well understood. The
unstable ¥ particle has been discussed by several
authors who construct the V-particle wavefunction
using somewhat different approaches and who reach
somewhat diverse conclusions. Glaser and Kaillen®
construct the unstable V-particle wavefunction from
the stable V-particle wavefunction by replacing
the bound-state energy with the complex energy
E + iA. They point out that this differs from an exact
solution by terms which are of the order of the half-
width of the state. To obtain the expected exponential
decay, the limit 4 — oo is taken. There seems to be no
justification for this procedure, especially since this
limit reduces the state to the mathematical ¥-particle
state.

Araki et al.® use an S-matrix approach to show that
an exponential decay results when the mathematical
V-particle state is used as the unstable state. Except for
-—"W was performed in the Ames Laboratory of the U.S.
Atomic Energy Commission, contribution No. 2477.

1 See for example, S. S. Schweber, An Introduction to Rela-
tivistic Quantum Field Theory (Row, Peterson & Co., New York,
1961), Chap. 12, Sec. 12b, p. 352; C. Killen, Lectures in Theoretical
Physics, 1961: Brandeis Summer Institute, M. E. Rose and E. C. G.
Sudarshan, Eds. (W. A. Benjamin, Inc., New York, 1962). For more
recent references see also L. M. Scarfone, J. Math. Phys. 9, 346
(1968), and M. M. Broido, J. Math. Phys. 9, 510 (1968).

2 V. Glasser and C. Killen, Nucl. Phys. 2, 706 (1956-57).

H. Araki, Y. Munakata, M. Kawaguchi, and T. Goto, Progr.
Theoret. Phys. (Kyoto) 17, 419 (1957), Sec. 18b.

the fact that an exponential decay is obtained, it is
not clear whether or not this is the proper choice since
it is not apparent that this state is produced from the
scattering of the N and 6 particles—the only mecha-
nism for the production of the unstable ¥V particlein the
Lee model. In addition, complex normalization
constants are used which cause difficulties with the
Hermitian properties of the renormalized fields.

Levy* constructs a general wavefunction using
arbitrary coefficients for the mathematical states.
These coeflicients are presumed to be determined by
the production process. He shows that simple choices
for the coefficients, none of which correspond to those
used by the authors previously cited, lead to as pure an
exponential decay as is desired. Again no attempt is
made to relate these coefficients to the scattering
process. Levy also discusses the ambiguities that arise
in the renormalization process for the unstable cases.

In view of the fact that the Lee model is one of the
most simple field-theoretical models that involve
unstable particles, it is clear that the “state of the art”
regarding these particles is, at best, uncertain.

In a recent paper,® the authors presented a wave-
packet formalism which extends the usual S-matrix
approach to scattering theory to include the case of
decaying states. The bound state and the time depend-
ence of the scattering state can be calculated in a simple,
straightforward way. This formalism is applied in this
paper to the N + 0 sector in an attempt to clarify the
analysis of the unstable V particle. The number of
V particles produced as a function of time is calculated
from the observed number of final-state N and 6
particles and shown to agree with the number obtained
by projecting the |N, 0) state onto the mathematical

4 M. M. Levy, Nuovo Cimento 13, 115 (1959); 14, 612 (1959).
5T. A. Weber and C. L. Hammer, USAEC Report 15-1795,
1969.
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V-particle state. It is therefore clear that the part of
the | N, 0) state which is not the incident wave is the
unstable V-particle state. Since this term also contains
the amplitude of the incident wave, the dependence
on the production process is immediately apparent.
For the initial conditions being those assumed in the
scattering problem, the expected time dependence is
obtained. If it is assumed that the existence of the
V-particle state has been determined by measurement
after it has been produced, so that the state can be
normalized to unity thereby making it independent of
the production process, then the state reduces initially
to the “dressed”” mathematical V-particle state, which,
apart from the renormalization factor, justifies the
choice of Araki et al.?® for the unstable V particle. If
a bound-state singularity is assumed, rather than a
pole in the second sheet, then the stable ¥ particle is
obtained.

II. REVIEW

The basic idea developed previously,® and which
will be used in this analysis, is that, given an initial
condition

oy = [~ apdce) 1) 1)

the solution to the Schrédinger equation

H |p(t)) = i(3/0¢) [y(t))

can be written as

Ip()) = fedpA(p) lp.) exp (—iED),

2

3)

where |y, ) is the stationary state solution

lpy) =1+ (E — H+ in)*H']|p),
Hly,) =Elyp,), @

and C is a contour in the complex p plane which is
chosen so that

fedpA(p)(E _H4 i H =0 (5

Here it is assumed that

H=H,+H ©)

and that |p) is the eigenstate
H,|p) = E|p). Q)

As a consequence of Eq. (5), for £ =0, |p(t)) as
expressed in Eq. (3) reduces to {(0)) so that the initial
conditions are automatically satisfied.

The Hamiltonian for the Lee model can be expressed

C. L. HAMMER AND T. A. WEBER

as
Hy = My J dpyiP)Yy(P) + My f dpyNp)¥A(p)

+1 j dka'®a(k); (8)

- dp ( dk f
H = —g(2m) M M, | =~
go2m) M, Nf o f )@

X [y ppae — Ka®k) + a' Gyle — Ky )],

9)
where the commutation rules are (
[a(k), a'(9)] = 203k — @),
{or®), vp(@} = (E/M))ép — @), (10)

{wx(P), vXD)} = (Ex/MN)IP — ),
w? = k® 4 pt.

and

The function f(w) is the usual “cutoff” function;
f(w) ~ Ofor large w, and g, is a real coupling constant.
As is customary in Lee-model calculations, because of
the sharp cutoff due to f{w), the recoil of the heavy
V and N particles is ignored. Thus E, and Ey, will be
replaced by My, and M.

The eigenstates of H will be written as |V, N, 0),
corresponding to the three particles of the Lee model,
and the eigenstates of H, will be written as

IP ’p - k’ k>a
corresponding to a ¥ particle of momentum p, an N
particle of momentum p — k, and a 6 particle of
momentum k. With the normalization used in the
preceding equations, it follows that the configuration
representation for the state vectors of H, is

(x19 X3, 0 | 0’ ps k> = uN(Ps xz)“o(ka xl)’
where

(11)

u(q,y) = 2n) ¥ exp (iq - y). (12)

III. THE N, 6 STATE
The solution for the N, § sector of the Lee model is
well known and has been reproduced in many places.!
However, to use the contour integration technique
described in the previous section and to discuss decay-
ing states, it is more convenient to rederive the solution
by using the idea of the level shift operator. The stable
V particle and the N, 0 scattering state can then be

discussed from a single point of view.
The starting point is the Lippman—Schwinger form

[0, N, 0) = [l + (E — H + in) 'H'|Qw) ¥
x10,p — k. k) (13)
={l 4 (E — H, + in)™
x [H + H'(E — H + in)"H'}Qw)*

x10,p—k, k), (14)
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where E = My + o and where the factor 2w)? is
required by the normalization

<P! - k!,k’,ol‘),]’ - k: k>
=2wé(p’ — k' — p + k)6(k’ — k).
With the help of the relation
H'|0,p — k, k) = —(2m)igo flw) |p, 0,0), (15)
this equation reduces to
(2wt |0, N, 6)
=10,p — k, k) — g(2m) H(w)[(E — My + in)™

+ (E — Hy + in)H'(E — H + in)™]|p, 0,0).
(16)

The product H'(E — H + in)~* can be written in
terms of the level-shift operator R as in Goldberger
and Watson$:

H'(E — H + in)™ |p, 0,0)

E — My — (0,0, p| (R)|p,0,0) + in
where R is defined as
R|p,0,0)

= [H’ + H’PV(E"" Ha —‘PVH'PV)mlPVH']IP,O, 0>.

(18)
Py is the projection operator

Pyp=1-— f dp1p,0,0)(0,0,p1  (19)

which projects out the ¥ particle, and the reduced
matrix element is defined in general by

k,p'—k,p'1O\p,p —k, k)
=00 —p)k,p—k,pl (O Ip,p — k, k).

For the N, 0 sector, the only other stateis [0, p — k, k)
so that

Py =fdp§"-|o,p — k k) (k,p— k0. (20)
(/2]

To complete the solution the matrix elements
(k,p — k,0 (R)p,0,0) and (0,0,p| (R)|p,0,0)
must be evaluated. The first follows directly from Eq.
(18) and the commauntation relations. This gives

(k. p — k,0 (R)|p,0,0) = —2n)igflw). (21)

¢ Marvin L. Gold and Kenneth M. Watson, Collision
Theory (John Wiley & Sons, Inc., New York, 1964), Chap. 8, pp.
437-452.
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The second follows from the dispersion relation

R,(E)
= (0.0, pl (R)1p,0,0)

= D(E)— il(F) (22)

o ) I
= (0,0, p|(H)15,0,0) — 7~ f dol(My + o)
m (D+MN’—E"“I."]

2
where, as is shown in Goldberger and Watson,* &
1E) = limy f di (K, p = k, 01 (R) I, 0, O

o ) 20 (E—My— o)+ (24a)
E>My+ o,
KE)=0, E<My+ o,
and
D(E) = (0,0, p| (H) |p, 0, 0)
- f do '(M"’ + “’) (24b)
From Eq. (21) it then follows that
I(E) = (4n)'gokf*(w), E 2> My + o,
HE) =0, E<My+ o (25

Since the matrix element of H’ in Eq. (23) vanishes,
Eq. (25) leads to the result

kf*(w)
o+ My—E—iy

RUE) = ~m gl "do (26a)

or, for the continuation into the second sheet,

RAE) = —(2m) g} fc““’ _ @)

(26b)

where C extends from u to oo going below the pole in
the integrand. Except for a sign, the function
F(E — My) defined by Killen® is expressed by Eq.
(26a).

By interposing a complete set of states to the left of
R, in Eq. (16) and using Eqs. (21) and (22), the N, 6
solution is found to be

(20 |0.N,0) =10, p — k, k)

2t f()
E — My — R(E) + in

« | diny o)
E—~My— o+ iy

where @ = w(k).

[np, 0,0) — 2m) g,

0, p — £, la], @7
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IV. THE STABLE V PARTICLE

It is readily seen from Eq. (26) that R (E) is real if
E<u+ My. Recalling that E = w + My, this
implies that @ < u or that k is imaginary for these
values. This corresponds to a bound-state pole in the
state vector |0, N, 0) if E = M, + R,(E) in this
region. If one assumes this is the case, then, since Eq.
(27) represents a solution for all , it follows that the
contour integral

V,0,0) = §§dk3(k) 0, N, 6) 28)

C
is also a solution, where C is a contour, arbitrarily
small, encircling the pole. If Ey, is the value of E at the
pole,

Ey = My + R,(Eyp). (29)
Evaluation of Eq. (28) gives
V,0,0) = Z4(E;) 15, 0,0) — @m)Pg
« [ [@k2O)f(®) [0, p — k, k>, (30)
Ey — My — o + iy
where Z(E}) is the normalization constant
o 2
ZU(Ey) =1+ (zw)‘zgﬁf dokf () :
w (Ey — My — o)
=1— MV_) (31)
dEP'
and g is the renormalized coupling constant
8" = Z(Ey)gs. (32)

This is the usual stable V-particle solution! with
R, (Ey) corresponding to the mass renormalization
term
6m = EV - MV
dowkf¥(w)

= —ZYE)g*2m)? f —_—

33
w + MA\,' —_ EV ( )

as can be seen from Eqs. (26) and (32).

V. N, 6 RESONANT SCATTERING

If the resonance has a narrow width, then, at the
appropriate energies, an unstable state will be formed
which will subsequently decay into an N particle and
an § particle. The probability that those particles are
observed at large distances from the scattering region
should depend upon time according to the usual decay
rule [1 — exp (—TI't")], where ¢’ is the time at which
the unstable state decays. To show that this is indeed
the case, it is appropriate to use the configuration
representation.
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If x, and x, are the position vectors of the § and N
particles, respectively, then the probability that these
particles are at these positions can be obtained,
according to Eq. (11), from the amplitude

P(Xg, X;) = (X5, %1, 0 l 0, N, 6)
= uy(p — k, xp)uy(k, X)20)?
Qm) Qo) tgif(w)
E — My — R,(E) + in
s« [ [@K28)f @)ux(p — K, x)un(k, X5)
E—My— &+ iy

(34

The algebra is greatly simplified without loss of
physical content by choosing the wavepacket for the
N particle considerably smaller in spatial extent than
the wavepacket of the § particle. With this approxi-
mation, X, can be taken equal to zero so that the N
particle is “nailed down™ at the origin. After com-
pleting the angular integration, the scattering solution
becomes

P(xs, 0) = 2m)Fw)?

x [t %) + @2m) R (w)(ix)
E— MV - RD(E) + m
-0 E—My—6+iy

where x, = |x,|. The solution as a function of time is

w(Xz, t) =fedka(k)<p(x2, 0)exp (—iEt), (36)

where € must be chosen to eliminate the second term
of Eq. (35) when ¢ = 0.

The contour which will accomplish this purpose is
shown in Fig. 1 along with the singularities of ¢(x;, 0).
The discussion which follows is based on the assump-
tion that the 0 particle is nonrelativistic, as is appro-
priate since recoil of the heavy particles is ignored.
The resonant and bound-state singularities, assumed
here to be simple poles, arise from the vanishing of the

£-PLANE

4E,)
e M :

. o4& (E\)

Fi1G. 1. The contour C and the singularities of ¢p(x;, 0) in the k plane.
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denominator E — My, — R,(E). By convention, E +
in is chosen on the first sheet of R,(E) and hence on
the first sheet of @(x,, 0). This corresponds to values
of k in the upper k plane. If E = My + R,(E) for
values (real E) > My + w, it is easily shown that
@(X,, 0) has singularities, corresponding to the reso-
nance singularities, in the second sheet at

E = My + D(E) % il(E)

or in the third and fourth quadrant of the k plane as
shown in Fig. 1. Except for these singularities, these
functions are analytic. The contour must also exclude
any singularities of f(w) which are in the upper & plane.
Also, to eliminate the second term of ¢(x,,0)att =0
requires the assumption that f(w) has appropriate
properties along the infinite arc. It should be noted
that the quantity % in Eq. (36) can be set equal to
zero with the understanding that E corresponds to
values of k in the upper k plane.

For the scattering solution, only terms proportional
to (1/x,) need be retained. Therefore only the contri-
bution from the simple pole at k =k + in in the
integrand of Eq. (35) need be considered. For large
X, @(Xy, 0) then is

P(X5, 0);, 00 = 2 Q)

-1 _2 r2 .
x [exp (k- 3y — G gb @) exp (rk_xa}
E — My — R(E) + in

(37
or, in terms of spherical harmonics,
90, 0y = 22m)H20) i Y () Vi)
2 £27 —1 .
% [jl(kxz) _ 01080/ (@)(4mx,)"" exp (l-kXZ):l' (38)
E— M, —R(E)+ iy

It is readily shown® that the initial wavepacket can
be expanded in terms of radial functions according to

Y(xy,0) =%, dkkza,m(k, Ko, Xg) ju(kx3) Yp,(%5),
(39)

where x, and k, are the average position and momen-
tum of the packet at ¢+ = 0. If the over-all factors of
Eq. (38) are absorbed in the coefficient g, , the
scattering solution at any time ¢ is

PXes Dayorn = Zum f K diay(k, o, xg)ji(kxs)
X Ylm(X-Z) exp (_’Et) - g§(4ﬂx2)_lzlm61.0

X [ K b il e xp DR IR D,
e E — M, — R(E)

(40)
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Therefore the scattered packet is given by
Vi, 1) = —gildm)ix?
2 2 : _
XJ‘ k* dkf*(w)ag, exp i(kx, Et). @1)
e E — My, — R(E)

The denominator in the integrand vanishes for
R,(E) real only if there are bound states and the
singularities are on the imaginary k axis. If this is the
case, the mathematical mass M}, which is not a
measurable quantity, can be expressed as a function of
the bound-state energy through Eqs. (26) and (29):

E — My — R,(E) = E — Ey + R,(Ey) — R,(E),

= (E — Ep)Z7YE), (42)
where
ZH(E) =1+ gy2m)*
| dokjAG) — @)
# (@+ My — Ep)o+ My — E — in)

Note that Z(E}) is the residue of the denominator in
Eq. (41) which accounts for the second equation given
in Eq. (31).

In terms of renormalized quantities, the scattered
packet is

P(Xe, 1) = —(4m)~tgixg!

2 2
x fe%%l@[Z(E)/Z(E,y)] exp i(kx, — Ef).
(44)
Because of the ratio Z(E)/Z(Ey), Eq. (44) is finite in
the point-interaction limit, f(w) — 1.7
The denominator in the integrand of Eq. (41)
vanishes for R (E) complex only if there are resonant
states. If the singularity is a simple pole, the denomi-
nator vanishes when

Ey = My + R,(Ep), (45)
where E}, is the complex eigenvalue of H,®
Ey = Eg — i(3D); (46)

Ep is the center of the resonance; I is the observed
half-width; and the definition in Eq. (26b) must be
used to define R, (E;). In parallel to the bound-state
case, Eq. (45) can be used to eliminate My, in terms of
the measurable quantities £ and I'. Thus,

E — My — R(E) = Z7EXE — Ey), (47
7 F. J. Yndurain, J. Math. Phys. 7, 1133 (1966). In this paper it is
shown that if the Lee model is analyzed with relativistic kinematics,
the point-coupling limit is better behaved.
8 If in Eq. (28) the contour encircles the pole at Ey,, the state that
is obtained is a solution of H but it is not normalizable.
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where here E, replaces Ej, in Eq. (43) giving

Z'7YE) =1+ g2m)™"

XJ' dwkf*(w)
¢(w+ My — Ep)w + My — E)’

(48)

where C extends from w = u to w = o and goes
below both simple poles in the integrand. The scattered
solution now becomes

Yuxe, 1) = —(dm)y gtz exp [i8(E})]

dkk*f¥(w)a , b .
eb—f_(g— (Z/(B)Z'(E)] exp i(kx, — E),
(49)
where
g* = & |Z'(Ep) (50)
and ¢ is defined by
Z'(E) = |Z'(E)| exp id(E). (51)

Because the scattering solution is independent of the
phase 4, the measured coupling constant will depend
only on the absolute value as defined in Eq. (50). As
was previously the case for Z(Ey), Z'(E}) is the residue
of the denominator in Eq. (41):

dR,(Ey)
dE,

Thus, as E;, — Ej, it follows that Z'(E}) — Z(Ey), as
is to be expected if a single analysis is to describe both
the stable and unstable cases. The solution given in
Eq. (49) is simply the analytic continuation of the
stable solution given in Eq. (44).

Equations (45) and (47) can be used to show that
I(E) is related to the half-width by the relation

I(E) = 1T'|Z'(E)|* cos 8(E).

Z(Ey)=1—

(52)

For scattering in the vicinity of a very narrow reso-
nance, it is usually assumed that I(E) is slowly varying
and that it can be replaced by

I(Eg) = 3T,

the unrenormalized half-width. In this limit, to lowest
order in g3,

30 = 40 |Z'(Ep)l, (53)
as is to be expected. To show the exponential decay
of the scattering solution, it is necessary to consider
Eq. (49) in this limit. As a result, y,(x,, t) becomes

plx,, 1) = —(4m)yHgixg?
xf dkk*f (w)ag, exp i(kx, — Et)
Cc

O(ul'1k%). (54
E— Ep+ 3l + O(ul'/kg). (54)
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The simplest incident wave that satisfies the
assumptions already made with regard to spatial
extent is a semi-infinite one-dimensional wavetrain

P(xz, 0) = O(Ry - X, — X,) exp [iko(xo — %o Xp)].
(55)

To establish this function as the initial condition for
the scattering solution given in Eq. (35) requires that

W(xs, 0) = fedkA(k)<x2, %1.0]0, N, 6)

= f k(20 AK)xz, x1,0(0, p — k, k).

(56)
For x;, = 0 and x, chosen in the —Z direction,
AK) = i(27r)2(2w)%5(k,)6(k,,).exp (ikzxo)’ (57)
k, — ky + ie
or, after integration over k, and k,,
p(x,,0) = —(2~rri)“f dk(k — ko + ie)™?
X exp [ik(xg — X * Xp)]
= 2%, (= )'Y 5 (%0) Vi %2)
x f * dkji(kxp) exp ('ikxo). (58)
—® k - ko + 1€

Identification with Eq. (39) shows that

ago(k, kg, Xo)
= 2i(4m) 2k — ko + i€y exp (ikxy). (59)

The resonant scattering solution then takes the form
Yk, 1) = —dpuixglgi(dm)?

» [ dkf¥ (o) exp i[k(xs + xo) — Et]
e (k — k)k — ko)(k — ko + i€)

where k, and k, are defined by

(:},u)(k — k)(k — k)
= (k*2p) + My + p — Ep + 4T

This integral can now be evaluated using the asymp-
totic integration procedure developed previously.®
The contour C can be distorted from the real k axis to
the contour shown in Fig. 2. The 45° line represents the
line of steepest descent, giving negligible contribution
to the original integral. Consequently, the only con-
tribution arises from the encircled poles at &, and k;, .

* T. A. Weber, D. M. Fradkin, and C. L. Hammer, Ann. Phys.
(N.Y.) 27, 362 (1964); C. L. Hammer and T. A. Weber, J. Math.
Phys. 6, 1591 (1965).
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&-PLANE

FiG. 2. The distorted contour in the k plane.

The result is

'Ps(xz ] t)
_ (amx) i)
"~ Ey— Ep+ &l

X {exp ,i[ko(xz + X¢) — Eot]®((k0/,u)t — Xy — Xo)
— exp [(=3T(" — 1] exp ilkg(xs + Xo) — Egt]
x O((kg/w)t — X2 — X0} + x5 0(uTVk%), (60)

where the retarded time ¢’ is given by

£ =t — pxafg (61)
and
wy = w(ky), E, = E(ky),
to = (uxo/kg) = (xofko). (62)

In deriving this equation use is made of the relation
lko — kgl ~ uT'/kg, which is required because of the
assumptions made in arriving at Eq. (53). The
asymptotic procedure used to solve the integral in
Eq. (54) does not strictly apply when the 45° contour
is very close to the poles. Thus k, should be replaced by
kp in the argument of the first step function to be
consistent with the approximation already made.

The second term of Eq. (60),1° which clearly repre-
sents the decay of the unstable V" particle, implicitly
contains the scattering distance x, 4 x, in the damping
exponential. To be consistant with the scattering
solution, exp —3I'(t" — 1,) > x3'. Substitution for ¢
in this expression from the argument of the appro-
priate step function gives the largest value of the
exponential (i.e., the smallest value for ¢) as

exp ~[(W'T*[4kR)(x: + x0)]1 > x3".  (63)
Rearranging this expression gives
(uI'[kR)® & 16[kg(xs + x%0)I ™" In x, (64)

10 C. L. Hammer and T. A. Weber, J. Math. Phys. 8, 494 (1967).
This term is shown to exist for any isolated pole in the second sheet,
independent of the model or the wavepacket shape.
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as a measure of the validity of y,. For larger values of
I', the second term of Eq. (60) should be dropped.

The scattering cross section, which can be calculated
from the incident and scattered currents in the usual
way, is, for t > ¢,

do _ (440
dQ (E, — Eg)* + I
X {1 — 2cos [(E, — ER)t' — ty)]
x exp [—3(t" — 1)]
+ exp —I'(t' — t;) + O(ul'/kR)}, (65)

where
cos [(ko ~ kR)(x2 + xg) — (Ep — ER)t]
= cos [(Ey — ER)(t' — t)].

For the limit (¢’ — ¢,) — oo, this result is what one
expects for an S-matrix calculation for N, 0 scattering
where the cross section is defined as!

do = J' (27)'8(p, — p) IR,I* dp dk
pxpo vy — Yol 2m)Ppy (27)°p,

where the particle densities are

» (66)

po = 20(2m)73,

ey = (Ex/My)(2m)~3, (67)
and

Sy = —Q2m)tid(p, — pIR;.

The time dependence of Eq. (65) is exactly that for the
decay of a prepared unstable state of mean life I'* as
calculated by Goldberger and Watson.® Thus the
cross section represents the elastic scattering of N, 8
particles via the formation of an intermediate unstable
state which subsequently decays.

Since it is assumed that the resonance width is very
narrow, it is appropriate in finding the transition rate
per unit volume to integrate the incident beam energies
over the resonance spectrum

(68)

‘Z—N = py f dQ f dogW(wy)py X doldQ,  (69)
t W

where W(w,) is the spectral distribution of the incident
0 particles. The result is

N _ Wwpnkag' (r)2m) T

dt
x {1 —exp —[I'(¢' — 1)1}, (70)

1! Stephen Gasciorowicz, Elementary Particle Physics (John Wiley
& Sons, Inc., New York, 1960), p. 142.
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where the integral relations

f (dogJw)kpaW(@)(Ey ~ Eg)? + (AU
o 2k T (w0 )2,

f (drf o)k pgW () €08 [(Eq — ER)(t’ — 1o)]
(E, — Ep)* + (31)

22 2kl W (wR)2m) ™ exp [—40(t — )] (71)

have been used.
The quantity I'™! can be eliminated by using Eqs.
(25) and (52), so that

dN . gt

o paW (@R (wp)(2m) (1 — exp = (¢’ — 1)),
(72)

or, in terms of matrix elements,

dN 2

Et— = 2nW(wgr)py kg, b — kg, 0L (R) |p, 0, 0)p|

X [l —exp =I'(t' — tp)], (73)
where |p, 0, 0), is the dressed mathematical state

Ip, 0,0)p = |Z'(E})|* |p, 0, 0).

This is the result for the rate of formation of decay
products that should be expected on classical grounds
for a beam of particles which begins to form unstable
states of mean life I'"1 at the time 7, at the constant
rate 2nW(wp)py [kgsp — kg, 0l (R)|p, 0, 0)pl>—a
direct parallel to the quantum-mechanical calculation
done here for a semi-infinite wavetrain representing
the 0 particle which begins interacting with the N
particle at #,, interacting continuously thereafter to
form unstable V-particle states.

Since the rate of decay of the V particle dN°/dt is
related to the rate of formation of the N and 0 particles
dN/dt by

dN _ _dx
dt dt
=T,

the number of V particles per unit volume present at
the time ¢’ is deduced as

N =2mpyW(wg)T [(kg, p — kg, 0] (R)|p,0,0)p|*
X [l —exp — T'(t' — 1)} (74)
VI. CONFIGURATION REPRESENTATION
FOR THE UNSTABLE V PARTICLE

The probability that a ¥ particle will be at the
position x, at the time ¢ can be obtained from the
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amplitude
py(x, ) = f dKA(K) exp (—iE£)0, 0, x, | 0, N, ).
(75)
Substitution for |0, N, ) from Eq. (27) and for A(k)
from Eq. (57) gives
yyp(X1, 1) = (2m)~(2mi) g, exp (ip - Xy)

XJ‘ dkf(w) exp i(kx, — Et)
€ (k — ko + ie)[E — My — R(E))’

(76)

where C is the contour used previously. It should be
noted here that p,(x,, 0) = 0, as is appropriate. This
expression can be evaluated for large ¢ and x, (recall
X, is the initial position of the leading edge of the
incident wave and is therefore asymptotic) with x,/t
finite in a manner similar to that used for the scattered
wave in the previous section. The result is, for smalil
(T/kE),
—3

vy, 1) = — FT_&f(@r)

Ey— Ep + il

X {@((%)t — xo) exp i(koxo — Egf)

exp (ip * x,)

_ @((%)t - xo) exp [—31'(t — )]

. r
X exp i(kgpxo — ERt)} + o(%?). (77)

The probability density for 1 > 1, is
o _ 2 g’ (wh)
Yryy = 2 2
(Eo — Eg)® + T
X {1 — cos [(Eg — Eo)(t — to)]
X exp [—3T(t — 1)] + exp [-T(t — 1,)]}.
(78)

The number of V particles per unit volume follows
as

N =fdw0W(wo)1P;"/’V

= 2mpyW(wg) (k> p — kg, 0 (R)]p,0,0)p|" I
X {1 — exp [-I'(t — 1)1}, (79)

in agreement with the result deduced in Eq. (74).

VII. THE UNSTABLE V-PARTICLE STATE

As pointed out by Levy,* any state that represents
the unstable V particle will contain coefficients that
depend upon the method of production. On the
other hand, once the existence of this state is made
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known through a subsequent measurement, the
probability for the system being in that state at that
instant is unity. Thus the state should be renormalized,
thereby making the coefficients independent of the
production process.

In the previous section, for a particular set of initial
conditions, the appropriate time dependence is
obtained for both the production of N and 6 par-
ticles and unstable V particles from that part of the
|0, N, 0) state which is not the incident wave, that is,
the second and third terms of Eq. (27). Also, only
this part of |0, N, 0) contributes to the stable V-
particle state derived in Egs. (28) and (30). This
clearly indicates that the state vector for the V par-
ticle is

V) = @ny [y .

« Ak, )2w) 1 (w) exp (~iED{jp, 0, 0)
E - MV - R],(E)

i (dk/20) f (@) o
+g2m T ) T My — G 0, p — k, b},
(80)

where A(k, p) depends upon the shape of the incident
wavepackets for the N and 0 particles, that is, the way
in which the N and @ particles are initially produced,
and C is chosen such that |F(0)) vanishes. The rate of
decay into N and @ particles is then obtained from
(Xg, X1, 0| V() or (k,p — k, 0| ¥(t)), whereas the
number of unstable J particles is obtained from
(0,0, x, | V(1)) or (0,0,p| V(t)). It is obvious that
this choice for [F(¢)) leads to the solutions previously
derived when Eq. (57) is used for A(k):

Ak, p') = AK)o(p' — p).

Since the V particle considered here is not formed
for £ <0, it is not surprising that (¥(0)| ¥(0)) = 0.
This means, however, that the state cannot be normed
in the usual manner. An appropriate normalization,
which is very physical, is also considered by Levy.t
Since the state can be observed only for asymptotic ¢,
that is, a time long compared to the interaction time,
it should be normalized in the asymptotic time limit.
For example, if E — M} — R(E) has a zero only at
E = Ey (the bound-state pole) and

Ak, p') = i[4nwZ(Ep)]tkf(w)]a(p),

where

(81)

fdp la@)* = 1,
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then the choice of C shown in Fig. 1 leads to

VO VO),w = 1.

It is easier to see this result if the integration variable
used in Eq. (80) is changed from k to w. The contour
€' in the w plane which corresponds to C is shown in
Fig. 3(a). The state |V(¢)) then is

(82)

V(1) = —2miy ' ZHE,)
exp (—IEY)
xf dpa(p)fe'd “E M, — R(E)

(dk[20) f ()
E—My—a

x {19, 0,0) + go(2m) f

X 10, p ~ k, b)}. (83)

The asymptotic limit is obtained by rotating the
contour 90° in a clockwise direction, as shown in Fig.
3(b). The integration about the branch point in R,(E)
leads to terms with inverse powers of ¢ so that only the
pole term contributes in the large-time limit:

V()1 = f dpa(p) exp (—iEVt)[z%(EV) 19,0,0)

|
+ o(,

(dk/2w) f() |0, p — k, k>j|
Ey ~My— o

V@) = f dpa(p) |V, 0, 0) exp (—iEpt) + O(Y),

(84)
w=PLANE
el
S
a) &
H
!
1

c) I

,.
Lo

e ———

FIG. 3. Various contours in the w plane: (a) corresponds to the
contour C in the k plane when a bound-state pole is present; (b)
the contour used to obtain the asymptotic time equations for the
stable case; (c) the contour used to obtain the asymptotic time
equations for the unstable case. The pole in the second sheet is
explicitly shown.
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Therefore, after a long time ¢, the system finds itself in
a stable V-particle state. Equation (82) then follows
directly from the normalization of |V, 0, 0).

If E — My — R(E) has a zero at E = Ej,, the pole
moves to the second sheet as shown in Fig. 3(c).
Correspondingly, if |Z’-3(E})| is used in Eq. (81)
instead of Z~}(E,,), the result is

0,0, 0" | V(10w = [Z(ENNZHE)a(p')
x exp (—iEgt) exp [—3T1] + 0(t?). (85)

Thus, for small I't, the sum over all ““dressed”” momen-
tum states has the expected exponential decay

f dp’ 15(0,0, p' | V(O = exp (—T1). (86

The projection onto the state |0, p’ — k', k') is more
complicated because of the extra pole that appears on
the real axis in the expression

k', p'— k', 0 | V()
= —Qmiy 27 HE)| a@)2m) Egof (@)

XJ’ dow exp (—iE?) 87)
¢ (@ — o)[E — My — R(E)]

For large ¢, this becomes
<k'3 P/ - k,’ 0 | V(t)>t—>oo

_ ey ta@)gef (@) 124 E)
w' + My — Ep — i(T[2)

x {Z'(w’ + My)exp [—i(w’ + Mp)t] — Z'(Ey)
x exp (—iEgt)exp (=310} + O(t_g). (88)

For I'/Ey, small, the probability for the decay into an
N and 0 particle is

f dy’ f (dK'[20") [(K', " — k', 0| V(O)I?

~ (T/2m) f do

y [1 — 2 cos(E — Eg)texp (—3I't) + exp (—T'1)]
(E — Ep)* + 31)*
~ I —exp(—T%),

(89)

where the last integral is evaluated similarly to those in
Eq. (71). The normalization of |V (¢)) follows from
Egs. (86) and (89), since, to lowest order in g (small
I), Ip, 0, 0) can be replaced by |p, 0, 0)p in the com-
pleteness relation.

It is interesting to note that, for both the stable and
unstable case, the state defined by Eq. (83) [with
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Z'(Ey) for the unstable case] is
V() = f dpa(p) exp (~iH1) |p, 0, 0)p,  (90)

where H is the Lee-model Hamiltonian. This is readily
seen by expanding |p, 0, 0) in terms of the complete
set of states |0, N, 0) and |V, 0, 0). Thus, one has,
for the stable case,

IV(I)> = Il + Izs
where

L= f dpa(p) |V,,0,0) exp (—iEyt) (1)

and

I, = —Qny gz ¥Ey) f dpa(p)

(dk/20) f(w) ‘
xfE M, —R¥E) — i D exlﬁ’(—t(Et).
92)

The term I, is the result expressed in Eq. (84) which
arose from Eq. (83) by integrating in a clockwise
direction around the bound-state pole. Thus, if Z, can
be shown to be the integration around the branch
point shown in Fig. 3(a), Eq. (90) will be proven.
Substitution from Eq. (27) for [0, N, 6) gives

1L,ZY(Ey)
= —(2m) g, | dpa(p)

(dk/2w) 0, p — k, k) exp (—iEt)
E — My, — R¥E)— iy

+ 72 dpate f "4

y I(E) exp (—iEt)
[E — My — R3(E) — in][E — My, — R(E) + in]
- dE 2(?) 0, - ]Es’;
x (10.0,0 — nytgy [ FEDOLE0),
E—-My—ao+iy
93)
where Eq. (25) is used to obtain I(E) in the second
term. The w integration in the second term of Eq. (93)
can be broken into two pieces using
—2iI(E)
[E — My — RYE)[E — My — R,(E)]
_ 1 _ 1
E— My — R(E) E— My —RYE)

o9

The first piece corresponds to an integral from u to
oo above the cut in R,(E). The second piece corre-
sponds to an integral from co to u below the cut in
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R,(E) if E in the denominator of the & integration in
Eq. (93) is continued to values below the real @ axis.
This continuation gives rise to a contribution from the
@ integration which cancels the first term in 7,, giving
finaily the cut contribution to Eq. (83):

= —Qmiy'z* __dwal®)
= @ (EV)J dpf E — My — R(E)
— (ot [(R2D)[(@)[0,p — k. k)
XOEQQ @) "8 E—My—@ }

(95)
where C is that part of C’ which is the contour around
the cut in R, (E) shown in Fig. 3(a). The proof of Eq.
(90) for the unstable case follows similarly, except that
I, = 0 and |Z'-¥(E;,)| replaces Z-}(Ey).

In parallel to the state |[V(r)), there is a state
|NG(1)), which can be defined as

INO(E)) = f dp f dk20) Ak, p)
X exp(—iH1) |0, p — k, k),

which in the asymptotic limit becomes

(96)

INO), o, = f dp | dk Ak, p) exp (—iE1) [0, N, 6).

7
The proof of this last equation follows similarly to the
proofs used to show Eqs. (84) and (90).
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VIII. CONCLUSIONS

In view of Eqgs. (84), (86), (89), (90), and (97) there
appears to be no difficulty in defining |in) states for the
Lee model even for the case in which no stable V
particle exists. However, to obtain the resonant state,
the infinite time limit must be avoided.

The ambiguities pointed out by Levy? in the defi-
nition of the renormalization constant Z'(E;) are
removed by requiring a pure exponential decay for the
V particle as shown in Eq. (86). Then, for the unstable
case as expressed by Eq. (84), the probability that the
V particle is “initially”” in the “‘dressed” momentum
state |p, 0, 0)p is

j dp V(D) | p. 0, Opl? = 1,

the same result obtained from Eq. (84) for the stable
case.

To what extent the results discussed in this paper
apply for isolated resonant states in general is not
completely clear because, although the level shift
operator approach is itself quite general, the specifics
presented here depend heavily upon the fact that only
two free-particle states are needed to describe the
N + 0 sector of the Lee model. However, the asser-
tions proven here will be very useful for the examina-
tions of more general models.
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It is shown that the most degenerate discrete series of unitary irreducible representations of U(2, 2),
the so-called ladder representations, remain irreducible when restricted to representations of the Poincaré
subgroup ISL(2, C). They correspond to representations of this subgroup with mass zero and arbitrary
integer or half-integer helicity A. The basis vectors of the canonical basis are calculated as functions of a
lightlike 4-vector, which is formed by the simultaneous eigenvalues of the generators of the subgroup of

translations.

1. INTRODUCTION

The group of pseudo-unitary transformations
SU(2, 2) has entered physics in various different ways.
First, it appeared as covering group of the conformal
group of space-time transformations (including the
Poincaré group, dilatations, and special conformal
transformations—see Appendix). With this interpre-
tation, it was considered as a symmetry of the wave
equations for massless particles.)® Secondly, the Lie
algebra of SU(2, 2) was considered as the spectrum-
generating algebra for the (spinless) hydrogen atom.”
Thirdly, it was also used in hadron physics as an
algebra acting on the space spanned by the states of
an infinite multiplet of particles at rest, or acting on
the indices of an infinite-component field.® In this
case, the so-called ladder representations of SU(2, 2)
were used, which can be simply described in terms of
creation and annihilation operators.®

In the main part of the present paper, we show that

* Supported in part by U.S. Air Force under contract No.
AF-AFOSR 69-1628.

T On leave of absence from the Joint Institute for Nuclear
Research, Dubna, USSR, and the Physical Institute of the Bulgarian
Academy of Sciences, Sofia, Bulgaria.

1P, A. M. Dirac, Ann. Math. 37, 429 (1936).

2 H. A. Kastrup, Phys. Rev. 142, 1060 (1966); 143, 1041 (1966);
150, 1183 (1966); Ann. Physik 9, 388 (1962). The last reference
contains a historical survey on physical applications of the con-
formal group.

3 A. Salam and G. Mack, Ann. Phys. (N.Y.) (to be published).

4 G. Mack, Nucl. Phys. B5, 499 (1968).

5 M. Flato and D. Sternheimer, Compt. Rend. 263, 935 (1966).

8 L. Gross, J. Math. Phys. 8, 1931 (1967), and references reviewed
in Ref. 3.

71. A. Malkin and V. I. Manko, J. Nucl. Phys. (USSR) 3, 372
(1966); Y. Nambu, Progr. Theoret. Phys. (Kyoto) Suppl. 37, 38,
368 (1966); Phys. Rev. 160, 1171 (1967); A. O. Barut and H. Kleinert,
Phys. Rev. 156, 1541 (1967); 157, 1180 (1967).

§ A. O. Barut and H. Kleinert, Phys. Rev. 161, 1464 (1967); A. O.
Barut, Lectures in Theoretical Physics (Gordon & Breach Publ. Co.,
New York, 1968), Vol. 10, Part B; C. Fronsdal (report of work prior
to publication).

ali the ladder representations of U(2, 2) [or SU(2, 2)]
remain irreducible when restricted to representations
of its Poincaré subgroup'® ISL(2, C). They correspond
to representations of this subgroup characterized by
zero mass and arbitrary integer and half-odd integer
helicity A. The first-order Casimir operator of U(2, 2),
which labels the irreducible representations of the
ladder series, is linearly related to the helicity A.

We also calculate the basis vectors of the canonical
basis as functions of a lightlike 4-vector £,, which
is formed by the simultaneous eigenvalues of the
generators of the subgroup of translations [Eq. (4.4)
and following]. The form of the generators of SU(2, 2)
when acting on functions f(&,) is given in Eq. (3.11).

It is amusing to find that one is led to the same
set of irreducible representations of SU(2, 2) for all
three physical interpretations of this group mentioned
above (Sec. 5). In particular, the representation used
for the group-theoretic description of the H atom
is equivalent to the one used for the description of
massless spin-0 particles.

An appendix is added which deals with the con-
formal group of space-time in quantum field theory.
A comment is included on the connection between
the conformal structure of space-time and infinite-
component field theories of the type investigated
recently.®

9 See B. Kursunoglu, Modern Quantum Theory (W. H. Freeman
and Co., San Francisco, 1962), p. 257. This description became
popular after the paper of Dothan, M. Gell-Mann, and Ne’eman,
Phys. Letters 17, 148 (1965). The relation between the ladder repre-
sentations of U(p,q) and the Gel’fand-Graev discrete series of
representations of this group is described in I. Todorov, ICTP,
Trieste, Preprint IC/66/71, 1966. Yao uses thg term ‘‘exceptional
degenerate discrete series”: T. Yao, J. Math. Phys. 8, 1931 (1967);
9, 1615 (1968).

10 This problem of irreducibility has been stated in D. Sternheimer,

J. Math. Pure Appl. 47, 289 (1968). The authors are indebted
to Dr. D. Sternheimer for bringing this reference to their attention.
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IRREDUCIBILITY OF LADDER

2. THE LADDER REPRESENTATIONS OF UQ2,2)

We start by recalling the definition of the ladder
representations. We present it here in a basis-
independent way. This is not only demanded by the
canon of mathematical aesthetics, but is also con-
venient for practical computations as it allows one to
choose the most convenient basis for the treatment
of any given problem.

We define U(2,2) as the group of linear trans-
formations in the complex 4-dimensional space C,
which preserves the Hermitian form

4

apy =3 4% 2.1)

a=1
Here and in the following, a bar stands for complex
conjugation. f is a Hermitian matrix with two
positive and two negative eigenvalues' satisfying the
U(2, 2)-invariant normalization det § = 1. By virtue
of the invariance of Eq. (2.1), the generators J 5 =
—Jp4=7vy4p of the defining representation of
SU(2, 2) obey

Byasb™ = vin- (2.2)

They admit of the following commutation relations
(CR):

Ver,Junl = i@y + gomlrn

— gxmlin — &inlkm)s (2.3)

where grr =(+————+) and ggyuy =0
otherwise. Capital Roman letters run over the values
0,1,2,3,5,6.

The remaining generator C; of U(2,2) commutes
with all the J,5 and is represented by unity in the
defining representation.

Let the Dirac matrices [i.e., spin affinors y, =
(7,)5) be defined in the usual way, satisfying covariant
anticommuitation relations for y,» =0,---,3:

{Vu’ Vv} =28,

Then we may choose the matrices y 4 of the defining
representation as follows:

‘Yuv = %l[’yu, yv]’ Vse = %‘})5 = %VO'}}I)@’VS,
yuﬁ = %i‘yﬂ)S’ ‘yuﬁ = %yu (24)

They satisfy Eq. (2.3). A matrix 8 obeying Eq. (2.2)
always exists. Its precise form depends on the choice
of basis for the y-matrices.?

11 We remark that this property of f is invariant because of the
inertia law of quadratic forms.

12 It has been conventional to choose v, and iy; Hermitian; in that
case 3 = 4-y,. This identification is, however, not invariant under
an arbitrary change of basis, but only under those induced by a
unitary transformation.
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The ladder representations are now constructed as
follows: We define the operator-valued 4-component
spinor, ¢ = (pMand § = ¢*f = (), =1,2,3,4,
and impose the canonical commutation relations

[9% @5l = 05, [¢% ¢/1=0. (2:5)

Each (star) representation of the canonical commuta-
tion relations for the ¢’s gives rise to a unitary
(infinite-dimensional) representation of U(2,2) gen-
erated by

Ci= ¢, J4p= ¢YaBP- (2.6)
There are two important inequivalent realizations of
the canonical commutation relations (2.5) and,
correspondingly, two series of inequivalent ladder
representations of U(2, 2). For the first, we define an
SU(2) ® SU(2) invariant vector ¥ by

OV, =¢ll ¥y=0, I, =4l xy) (27
For the second one, we put

I_g¥, = ¢ILY, = 0. (2.8)

To be consistent with the positivity of the metric in
the representation space, we have to assume in each
case the positive-definiteness of the 4 X 4 matrix:

(¥, (PILY*(PILY,)
= (Yo, (BlL.p) Pl )Yy = BIL, (2.9)

[the last equality is a consequence of Egs. (2.5) and
(2.7) or (2.8)]. This leads to a different sign of f in
the two cases. Taking a basis in which y, is Hermitian
and y, are anti-Hermitian, we obtain § = y, in the
case (2.7) and B = —v, in the case (2.8). In the first
case, we obtain the so-called £ series of most degenerate
representations of U(2,2); in the second case, we
arrive at the £* series (see Ref. 9); the representations
of these two series are conjugate to each other. Each
series contains a denumerable set of (unitary) irreduc-
ible representations of U(2, 2), labeled by the (integer)
value of the first-order Casimir operator C,. The
canonical basis is defined in terms of the eigenvectors
of the (maximal) set of commuting operators

—3Ci— 1, Ju, M2=Jf2 +J§3+J§1, Mjg=J,,
with eigenvalues 4, n, s(s + 1), and m. They change
in the range 1=0, Lo tn=|A+1,
A} +2,- -+ [+ sign for the case (2.7) and — sign
for the case (2.8)]; s =4}, Al + 1, -+, |n| —1;
—s < m < s. The representation used for the group-
theoretic description of the nonrelativistic hydrogen
atom is contained in the £ series for A = 0 (C; = —2).
All these representations are known to be integrable
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to unitary representations of the universal covering
group.?

3. REDUCTION TO REPRESENTATIONS OF
THE POINCARE SUBALGEBRA
It is convenient to introduce an alternative set of
generators in which the Poincaré subalgebra is dis-
played explicitly. We define, for 4, » =0, - - -, 3,

Muv =Ju> P,=Jy + Jyss
K,=Jw—Ju, D=Jg. 3.1

Their CR follow from Eq. (2.3) and are given in Eq.
(A2) of the Appendix. In particular, the generators
M,, and P, satisfy the CR of the Poincaré algebra
(the same is true for the set M,, and K,).

First, we show that

P,P* = K,K* =0, (3.2)

i.e., that the ladder representations contain only zero-
mass representations of the Poincaré subgroup.4
Let B,z be the antisymmetric tensor defined by

By B =y, (B = B,

and related to the charge-conjugation matrix C,; by
B = iCy;, where € is the completely antisymmetric
tensor with €53, = 1. Using the identity

(7)5(r"); = 0505 + (vs)s(vs); + 2" ByB,,, (3.3)
we readily establish that
Ry = Hy (1 £ iy) Iy (1 £ ivs)l}

is traceless (R =0) and antisymmetric (R}} =
—R33). This implies Eq. (3.2) by virtue of the CR
(2.5); for instance,

P,P* = ¢,¢',0°R5} = @.R239° = 0.

One can check (3.3) by applying both sides to any of
the quantities (y45)3, cf. (2.4) (sum over y and ).

It remains to show that these representations
remain actually irreducible when restricted to repre-
sentations of the Poincaré group and to determine the
helicities. (Recall that the zero-mass representations
of the Poincaré group which are used in physics are
labeled by the helicity.)

13 R. L. Anderson, J. Fischer, and R. Raczka, Proc. Roy. Soc.
(London) A302, 49 (1968). Moreover, it has been shown by Itzykson
and Bargmann that there exists a pair of irreducible representations
of the covering group of Sp(8, R) generated by all Hermitian quad-
ratic combinations of @, , ¢¥. These representations are acting on the
same Hilbert space (i.e., in our Fock space) and reduce, when
restricted to the subgroup U(2, 2), into direct sums of ladder repre-
sentation with either only integer, or only half-odd integer A. C.
Itzykson, Commun. Math. Phys. 4, 92 (1967); V. Bargmann,
Group Representation on Hilbert Spaces of Analytic Functions,
lectures at the International Symposium on Analytic Methods in
Mathematical Physics, Indiana University, 1968 (to be published).

14 This observation has been made earlier by B. Kursunoghu, J.
Math. Phys. 8, 1694 (1967).
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Let us choose the Dirac matrices, such that y; is
diagonal, and the matrix § satisfying Eq. (2.2) as
follows:

vo = (0 ao) v, = (O —a,-) = (ao 0)
° oo 0) 7° o, 0/ Vs 0 o
B = %y,, (3.4)

where o, is the 2 X 2 unit matrix and the g, are
Pauli matrices. We shall take o, to be diagonal.

To carry out the reduction, we re-express the genera-
tors as differential operators acting on functions of a
lightlike 4-vector &* which is formed by the simultane-
ous eigenvalues of the generators P* of translations.

Consider the Hilbert space of those complex
functions f(z,, z;) of two complex variables z,, z,
which have finite norm (f, f), where the scalar product
is defined as

(fg) = f f [y 208(z1s 2) d2, Pz, (3.5)

Here d?2 =dRezdlmz = }idzds. The polyno-
mials in z, %, d/0z, 3/dz form an irreducible set of
operators in this Hilbert space. Furthermore,

(0/0z)* = —0/0z and z* =z
We may then proceed to writing down the operator-
valued 4-component spinor ¢ in the form

7,
%
=\ wo02,
+0/0z,
and
5= (_aaz - aaZ tz,, :hz2), (3.6)

where again the + sign refers to the case (2.7) and the
— sign to the case (2.8). In both cases, the normalized
SU(2) ® SU(2) invariant vector is given by ¥, =
(2/m)e~*. The ladder representation has been displayed
in this form in Ref. 15.

The explicit form of the generators is found to be

*P, = z0,2Z, = %(za% + 56;2),
My = beidys = %(zo‘,,% - 532:0,,2),

+K, = — ‘% a"é% , 3.7
Ne=Jg=— 'E(za,,aa + a%a,cz),

s D. Tz. Stoyanov and I. Todorov, J. Math. Phys. 9, 2146 (1968).
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Here and in the following, ¢ =g"”0, and the
summation convention for u, »=0,---,3 is

adopted.
We now introduce a new set of four real inde-

pendent variables &', £2, £, and «, related to the
complex variables z,, z; by

— Q0 < Ej < +a)’
(3.8)

—¥=z0z j=1,2,3,
a=arg(z) +arg(z), 0< a<4dn.
All points with § = 0 are identified; then, the mapping

is bijective. arg (z) stands for the phase of z as usual.
It is convenient to introduce, in addition,

= [§] = za,2, &, = g,.£". 3.9)

Let us now re-express the functions f(z;, z,) which
form our Hilbert space as functions of the new
variables &, «

[z, 25) = F(&, &, &; a). (3.10)

Making use of the chain rule

9 9 38
9z, az af’ 0z, 0u
50 1138
'—,gf(“")“" S5 27,0a

and its analog for 0/0Z, one finds the form of the
generators acting on the new functions F as

+P, = &, (+ for thef series and — for the £* series),

ERE 2
M — 2 —2 .
" (e . a52) + 18 et
2 2 )
My, = (53 ¢ 853) + 1880
?
M12 = (El 852 52 51),
My = +i |§| — B —
aa
M. = 123 -2-__
02 = +,g,a£2+§£§l’aa,
Mo = +i[E) -2 a,gs’
D=t i
( +e ae’)
Ko = 181, — 2 (8 2 — o o)
v——lEl 512;2,
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+K, = +8A, — 25"3%,.3—35—1 - 2a%‘
vagen il el
K, = +8A, — 2& a_aéa_as_? - 25%—2
~ug e il el
— 2ifg] r“(ez o~ o 52) 2ol
(3.11)
Here we have used the abbreviations
B=3 -0 and 8= @+

AS)
Summation over repeated indices j is to be carried
out from 1 to 3. The first-order Casimir operator

C, of U(2, 2) takes the form
C,=—2i 9_ 2.
O

Finally, one finds for the invariant scalar product
from Eq. (3.5)

(F,6) = f daf  FE06E . (.13

(3.12)

For an irreducible representation of U(2,2), C,
is diagonal and takes integer values. Consequently,
d

i— =14 A=0,344 41, +3,
O

and
C,+2= =24 (3.14)

Substituting this into Eq. (3.11), we see that
P,, M,, are then generators of an irreducible repre-
sentation of the Poincaré group with zero mass and
helicity Aas given by Shirokov.*® Evidently, the remain-
ing generators D, K, act on the same irreducible
representation space of the Poincaré group. The first-
order Casimir operator C, is linearly related to the
helicity 4 by Eq. (3.13). This completes the proof of
our statements.

As a final remark, we note that the decomposition
of an arbitrary vector F into a sum of vectors that
transform according to an irreducible representation

1¢ Ju. M. Shirokov, Zh. Eksp. Teor. Fiz. 33, 1208 (1957) [Sov.
Phys.—JETP 6, 929 (1958)]. (There is a sign error in Shirokov’s
formula for My, = M, .)
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of U(2,2) is effected by carrying out a Fourier
transform of F with respect to the variable « over the
interval [0, 47):

FEo)=2 3 FiBe™

A=0 :f:é'

Here the helicity 4 runs through all integer and half-
integer numbers. The scalar product (3.13) may then
be rewritten as

(F, G) = Zfﬂgln(&)al(e). (3.15)

4. THE CANONICAL BASIS

The canonical basis ¥, , , ,, introduced in Sec. 2 is

defined in terms of the eigenvectors of a complete set

of commuting operators of the maximal compact
subgroup U(2) ® U(2):

(Cl + 2 + 2}")lF}.,n,s,m = Oa

Jos — MY 06m =0,

[M2 _ S(S + 1)]l}}}.,n,s,m = 0’

(MS - m)lyl,n,s,m = 0.

@.1)

Upon introduction of the parametrization

7, = (p/2)§e(i/2)(a+<p) sin 0/2’
= _(P/z)%e(i/z)(a—q;) cos /2,

<2

(4.2)

Egs. (4.1) reduce to the following system of ordinary
differential equations:

(l i - Z’)IFA nsm 0, (_l —a— - ’”)qﬂ’ﬂ‘ﬂ?,s,m = 0,
o ’” o

1 9. 6)
- —— —|sin 0 =
l: sin686( 00

12 ; (A% + m® — 2mA cos 0) — s(s + 1)]

sin
X lFA,'rz,s,m = 0’
2
[8_2 + g.?— - {—1- + S(S —: 1) - H}}Tl,n,s,m = 0
dp® pop 4 p p
4.3)

The normalized simultaneous solution of this system
of equations is given by

(n—s— 1)'}
(n + 9!
sL(2s+1)(P)eVm(p d(s)‘(e)e—-ua.

Wy = {(2s +1)

i

X e ® 4.4)

Here dJ8) are the well-known generalized spherical
functions associated with the (2s 4 1)-dimensional
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representation of SU(2). They are simply related to
the Jacobi polynomials.’?

The parameters p/2, 0, ¢ are the polar coordinates
of the vector § [cf. Egs. (3.8) and (4.2)]:

& =4psinfcos @, &2 = 4psinbsin g,

& = 1pcosh.

L!* is the Laguerre polynomial defined by?8

L3 (p) =r§ (n * a)(_—p)r

—o\n —r/) r!

n

= (oc + n) 1Fi(—n,a + 15 p).

Equation (4.4) is the desired expression for the
canonical basis.

5. TRANSFORMATION LAW OF LORENTZ
COVARIANT FIELDS

In the present section we shall present proof that
the ladder representations are unitarily equivalent
to the representations of SU(2, 2) used in Refs. 1-6 for
the description of massless particles (cf. Appendix).
This will involve establishing the transformation law
under SU(2, 2) of Lorentz covariant, local, massless,
free fields. As is well known, such a field is associated
with a pair of zero-mass representations of the
Poincaré group with helicity 2 and —A, describing
particles and antiparticles. The result is given in
Eq. (5.9) below.

Consider the Fock space JC created from a con-
formal invariant “vacuum” |0) by applying poly-
nomials in smeared creation operators a*(p, &4),
which satisfy either the usual Bose or Fermi rules for
integer or half-odd integer 4, respectively:

[a(p, ), a*(@', 1)]e = 0,22 Ipl 0°(p — P),

a(p, 210) =0, J4z[0)=0. (5.1)

We may identify the Hilbert space of wavefunctions
F,(p), considered in Sec. 3 with that subspace of JC
which consists of “one-particle states” with helicity 4,
by virtue of the isometry

Fy [Fy) = f 2d| @A, (52
whence
F(p) = (p, 4| F;), where (p, | = (0| a(p, 2). (5.3)

17 1. M. Gel’fand, R. A. Minlos, and Z. Ya. Shapiro, Representa-
tions of the Rotation and Lorentz Groups and their Application
(Pergamon Press, Ltd., London, 1963) (translated from the Russian),
p. 85. )

18 A. Erdélyi, Ed., Higher Transcendental Functions (McGraw-Hill
Book Co., New York, 1953), Vol. 1.
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Let us now impose on a(p, A) the following trans-
formation law:

(2)

pa(p, ). (5.4a)

la(p, 1), Japl- =
0%, are the differential operators, defined by the
right-hand side of Eq. (3.11) with ¢ replaced by p,
which implement the action of the generators J,p
in the irreducible representation space of functions
F,(p) considered in Sec. 3. The corresponding differ-
ential operator for a representation of the £* series
will be denoted by 9'}7). Equation (5.4a) defines
J4p =J*p as (unbounded) operators in J€, because
of Eq. (5.1). They form a representation of the
algebra of SU(2, 2); and its restriction to the subspace
of J consisting of vectors of the form (3.2) is unitarily
equivalent to the £ representation with helicity 4, which
was considered in Sec. 3. This follows immediately
from Eq. (5.3).
From Egs. (5.4) and (3.11), we find the further
relation

[a*(P, _}‘)a JAB]— = —éi;_é)a*(P, —l)

= 0Yz'a*(p, —1).  (5.4b)

The problem of constructing Lorentz covariant,
local, free massless fields from creation and annihila-
tion operators has been solved by Weinberg.!®2® By
definition, a Lorentz covariant (finite component)
field x,(x) transforms under Poincaré transformations
x* — Alx” + a* according to

U((l ’ A)XU(X) U(a > A)_l = Z Dtm’[A—l]xo'(Ax + a):
(5.5)

where D,,. is some finite-dimensional representation
of SL(2, C). We may restrict ourselves to irreducible
representations DYL72'; the result will carry over to
the general case immediately.

Weinberg shows that the only such massless fields
(acting in a Hilbert space with positive-definite metric)
are fields transforming according to a representation
Dy with j, — j, = A. Moreover, he proves that all
these fields may be written as suitable derivatives of
fields transforming according to (j, 0) and (0, ) for
A = Fj, respectively. We may, therefore, restrict our
attention to this case. Then, the field is given by

xﬁkﬂ%ﬁﬁWMWMmD

X [a(p, De™™ + a*(p, —H)e™?,

1% S. Weinberg, Phys. Rev. 134, B882 (1964).
20 S, Weinberg, Phys. Rev. 138, B988 (1965).
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with 4, (p?) = 4(p?B(p®) and

u,(p, A) = [2 |pl) DLIR(P)]
= [21plV DI + 3m, 6,0),
j=14.
R(p) is a (suitably standardized) 3 rotation which

takes the z axis into the unit vector p = p/ip} with
polar coordinates

(5.6)

pt =sinbcosg, P> =sinfsn¢g, P*=cosh.
(5.7

Its Euler angles may be chosen as ¢ + im, 0, 0,
whence the second equation for u,, D!? are the
rotation functions for the (2j + 1)-dimensional irre-
ducible representation of SU(2).

The field satisfies the equations

0

G, g -
(J V44 axo)gg(x) 0, (5.8a)

Cx(x) = 0. (5.8b)

J9 is the usual (2j + 1)-dimensional representation
of angular momentum

Uy % idalyr = 850 pial(J F ) £ 0 + DI,
[J3]o'a" = Gao’,o‘"

The representations of SU(2, 2) which have been used
for the description of massless particles are defined
by the following field transformation law:

[x.(x), P,1- = i0,2,(x),
[xa(x), M1 = {i(x,0, — %,0,)0,5 + [Z,)s0 Ja(%),
[xs(x), DL = i(l — x,8")x,(x), (5.9)
[x.(x), K, = {i(=2Ix, + 2x,x,0" — x%8,)3,,
+ 2x" 20 )06 o (%)

Here X, is the generator of SL(2, C) in the (i, jy)
representation, ie., in the present case of (0, ) and
(j, 0) fields,

Zox = _i(}*/j)-]ks (5.10)

Ei:‘ = €;lys
and
l=—1—]

It has been shown? that Eq. (5.9) is, in fact, the most
general local SU(2, 2)-transformation law for a field
that transforms under Lorentz transformations ac-
cording to a finite-dimensional, irreducible represen-
tation DV17) of SL(2, C) (see the Appendix).

Now we proceed to the equivalence between the
transformation law (5.9) and (5.4) for a field defined
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by Eq. (5.6). In other words, we shall show that
(%), J )
= @nyd [, (p. 2

x [e™0}a(p, ) + 70iPa*(p, — D), (5.11)

where the left-hand side is defined by Eqs. (5.9) and
(3.1).

For the generators P,, Eq. (5.11) is obviously true.
It suffices then to check Eq. (5.11) for the generator
Ky = Jy — Jos, since all other generators can be
expressed in terms of multiple commutators of these.
The proof is then an elementary, though somewhat
tedious, exercise in properties of rotation functions.
For the benefit of the reader let us sketch the calcula-
tion for the annihilation part x of a field, for
positive helicity 4 = +j. From Eq. (5.9) we find,
using well-known properties of the d distribution,

57, Kol = @m) j dips, (p)e >
]

2
x { (—|p| A— —)6,,» 2l o

pl
X ua'(p7 J)a(P, .])

As a consequence of (5.6), the u, satisfy

(J-p—Jjiphu(p,j) =0,
F
_—  j) = 0,
(lpl 210l J)ua(p 7

aa_eua(paj) = _i[_Sin ‘le + cos (p‘l2]aa'ua' (512)

) .
= ——(j cos 6 — au,(p,)),
sin 0

i ua(pa ]) = —i[J:i]ao'uu’ = —iau,,(p, ])
dg

Using these relations, it is readily established that
[Z.(,+)(x), K()]—
= (2m} f d*pe778 (pu (b, j)

cos 0 d
j = +
[p| sin* 6’ op

x {—lplA +2i jz;a(p,j)-

[p| sin® 6
The differential operator in the braces agrees, indeed,
with (3.11) and (3.14), which completes the proof
of our statement.

Finally, let us say a word about the vector potential
A, for a massless spin-1 particle. As discussed in
detail by Weinberg, it is not a Lorentz covariant
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field in the sense used above, but its Lorentz trans-
formation law differs from (5.5) by a gauge trans-
formation. The vector potential 4,(x) is defined in
terms of the field strengths, up to a gauge transforma-
tion, by

9,4, — 3,4, =F,,. (5.13)

F,, is expressed in terms of the electric and magnetic
field strengths E and B in the usual way. E — /B and
E + iB are the massless fields with helicity 1 = —1
and A = +1, respectively, as were considered above,
and Egs. (5.8a) are Maxwell’s equations. From Eq.
(5.13) and the transformation law (5.9) for F,,, one
checks that 4,(x) also transforms according to Eq.
(5.9) up to a gauge transformation, with / = —1.
X, are then the generators of SL(2, C) in the (}, }
representation.

An analogous statement holds for the spin-2
(gravitational) potential, again /= —1. We refer
the reader to Weinberg’s paper® for a detailed
discussion of the gravitational potential.
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APPENDIX: THE CONFORMAL GROUP OF
SPACE-TIME IN QUANTUM FIELD THEORY
The conformal group of space~time is compounded

from coordinate transformations as follows:

(a) inhomogeneous Lorentz transformations,
(b) dilatations x,, = px,, p > 0,
(c) special conformal transformations?!

x;, = ¢ {(x)(x, — ¢,x%),
where
a(x) =1 — 2cx + A%

This is the largest continuous group which leaves the
light cone invariant. The generators D of dilatation,

21 They may be written as xj, = Rf.Rxy, where R is the inversion
Rx, = —xu/x* and ¢, stands for the translation xj, = xu + c. We
stress, however, that R does not belong to the proper conformal

group.
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K, of special conformal transformations, and P,,
M,, of the Poincaré group satisfy the following CR:

[D,P,]=iP,,

[D,M,,] =0,
[D,K,] = —iK,,
K., K,] =0,

[K,, P,] = 2i(g,,D — M,,),
[K;, M,,] = (g, K, — g,Kp),
[P;, Muv] = i(g).va - gszn)’

M,,, Muv] = i(g“M" — My
= &My + 8aMyy).

(A1)

Note that the special conformal transformations do
not transform momentum eigenstates into momentum
eigenstates, since [K,,P,] does not commute with
the momenta P, . The relation

eiaDP2e—l'¢D ‘= e—2uP2 (A2)

implies that the mass-squared spectrum contained in
a unitary representation of SU(2,2) either covers
(at least) a whole real semiaxis or consists of the zero
point only.

Let us now consider a (quantum) field which
transforms according to a representation of the
conformal group, i.e.,

(T(@)1)u(X) = Sep(g, X)xs(g7"%).

Here g acts on x as indicated in (a)-(c).

The little group which leaves x = 0 invariant is
given by dilatations, special conformal transforma-
tions, and homogeneous Lorentz transformations. As
is seen from Eq. (Al), it is isomorphic to an inhomo-
geneous Lorentz group plus dilatations, i.e.,

(SL2,C)® {D}) " T,. (Ad)

The ‘““translations” T, are the image of the special
conformal transformations. Let the generators of
this little group be denoted by 6, «,, and X,
respectively. By the standard theory of induced
representations, one finds®

P, x(x) = i0,x(x),
M, x(x) = {i(x,0, — x,0,) + Z,,}x(x),
Dx(x) = {~ix"0, + d}x(x),
K, x(x) = {i2x,x,0" — x%3,
+ 2ix"[g,,6 — Z,,D) + x,}x'".

The action of finite transformations is given by Eq.
(A3) with

(A3)

(A5)

S.5(8, X) = D,4(1,81;").
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Here D is the representation of the little group (A4)
whose generators are 4, «,, X,,. The translation
which takes the point 0 of Minkowski space into x
is t,. Two choices of the representation of the little
group (A4) seem to be of particular interest:

(1) finite-dimensional representations with «, =0
and é = ill,

(2) infinite-dimensional unitary representations
with «, # 0.

We wish to make a comment on case (2) first. In this
case, x(x) is an infinite component field. Recently,
infinite-component field theories have been investi-
gated® which have the following property: for fixed
space-time coordinate x, x = 0, say, the components
of the field span an irreducible representation space
of the algebra of SU(2, 2). The representations used
are the ladder representations. The auxiliary (index —)
SU(2,2) is, of course, not identical with the con-
formal group of space-time, as it does not act on the
space-time coordinates. On the other hand, let us
assume that the conformal structure of space-time
reflects itself in the fact that the fields y(x) form a
representation space for the algebra of the conformal
group of space-time. The resulting little group which
acts on the indices only is then smaller than SU(2, 2)
and is given by (AS). However, the result of the
present paper tells us that the ladder representations
of the above-mentioned index — SU(2,2) remain
irreducible when restricted to the subgroup (A4),*
because this group contains an inhomogeneous
Lorentz group. Thus, the conformal structure of
space-time provides a new motivation for using fields
that transform according to a reducible representation
of the “spin” — SL(2, C). Moreover, for a special
choice of representations of the little group (A4)
(corresponding to «,«” = 0), we arrive at precisely
the same reducible representations of the “spin” —
SL(2, C) as have been used previously with the H
atom as motivation.

Case (1) has been investigated in some detail.!~®
Here we have to do with ordinary finite-component
fields. This is the case which we discussed in Sec. 5.
It is seen from Eq. (AS5) and the CR of Z,,,, «,, 6
that we must have 6 =cl, «, =0, if Z,, form an
irreducible representation of the SL(2, C) algebra.
This is a consequence of Schur’s lemma.

22 They are, however, not quite the only representations of
SU(2, 2) with this property. L. Castell [Nucl. Phys. B4, 343 (1967)]
has shown that the same is true for some other discrete degenerate
representations. They belong to xux# 7 0 and spin 0. The unitary
ray representations of the group (AS5) have been investigated by U.
Ottoson, Arkiv Fysik 33, 523 (1967). The authors are grateful to Dr.
L. Castell for helpful discussions on this and related points.
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Matrices of Finite Lorentz Transformations in a Noncompact
Basis. 1. Discrete Series of O(2, 1)
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We consider the problem of obtaining the matrices that represent finite group elements in unitary
irreducible representations of the group 0(2, 1), in a basis in which the “noncompact’’ generator of an
0(1, 1) subgroup is diagonal. The discrete series of representations is treated and expressions obtained
for the matrix elements of group elements belonging both to the O(2) subgroup and the other 0(1, 1)

subgroup.

INTRODUCTION

A detailed study of the structure and properties of
the representations of the group O(2, 1) is of consider-
able importance in connection with the current uses
of noncompact group representations in elementary
particle physics. Of these uses we may mention here
the theory of infinite-component wave equations and
of dynamical and noninvariance groups,! the develop-
ment of various types of partial wave expansions at
fixed momentum transfer,? and the representations of
local current algebras.®> Among the semisimple non-
compact Lie groups, the group O(2, 1) is the simplest
to study; at the same time it is contained as a subgroup
in every other semisimple noncompact Lie group. In
this respect, its position is similar to that of the three-
dimensional rotation group among all compact semi-
simple Lie groups.

The group O(2, 1) has the same Lie algebra as the
group SU(1, 1) of pseudounitary complex matrices
in two dimensions, the homomorphism from the
latter to the former being two-to-one. All the single-
valued nontrivial unitary irreducible representations
(UIR’s) of SU(1, 1) were determined a long time ago
by Bargmann. These UIR’s are all infinite-dimen-
sional. The method used by Bargmann was to first
determine all the Hermitian irreducible representa-
tions of the Lie algebra of SU(1, 1), and then explicitly

1 §ee, for instance, ‘‘Session on Infinite Representations of
Particles” in Proceedings of the 1967 International Conference on
Particles and Fields, University of Rochester, Rochester, N.Y.
(Interscience Publishers, New York, 1967).

2 M. Toller, CERN Preprints TH 770 and 780, 1967.

3 H. Bebie and H. Leutwyler, Phys. Rev. Letters 19, 618 (1967);

M. Gell-Mann, D. Horn, and J. Weyers, Proceedings of the Inter-
national Conference on Particle Physics, Heidelberg, September,
1967.

4V, Bargmann, Ann. Math. 48, 568 (1947). Other recent papers
on this group include: A. O. Barut and C. Fronsdal, Proc. Roy. Soc.
(London) A287, 532 (1965); A. Kihlberg, Arkiv Fysik 30, 121 (1965);
W. J. Holman 1 and L. C. Biedenharn, Ann. Phys. 39, 1 (1966);
N. Mukunda, J. Math, Phys. 8, 2210 (1967); 9, 417 (1968); J. G.
Kuriyan, N. Mukunda, and E. C. G. Sudarshan, J. Math. Phys.
9, 2100 (1968); A. O. Barut and E. C. Phillips, Commun. Math.

Phys. 8, 52 (1968).

demonstrate that to each such representation there
did correspond a UIR of the entire group. This
analysis was carried out in a basis in the representation
space, in which the generator of the compact subgroup
0Q2) of 0(2,1) was diagonal. The spectrum of
eigenvalues of this generator is discrete and any two
eigenvalues in a given UIR differ by an integer.
Bargmann aiso determined, in this basis, the matrices
that represent finite elements of the group. Analogous
to the Eulerian decomposition of rotations in three-
dimensional space, each element of O(2, 1) can be
written as a product of three elements, the first and
third belonging to the compact subgroup O(2), the
second belonging to a noncompact subgroup O(1, 1).
Consequently, the problem of computing the matrix
that represents an arbitrary element of the group,
in the above-mentioned basis, reduces to that of
computing the matrix that represents an arbitrary
element of a given O(1, 1) subgroup of O(2, 1). The
resulting matrix elements are closely related to the
d-functions of angular-momentum theory.

Elsewhere, we have examined the structure of the
UIR’s of O(2, 1) in a basis in which the (hyperbolic)
generator of an O(1, 1) subgroup is diagonalized.®
Our considerations were essentially restricted to the
Lie algebra, and the manner in which the generators
act in this “noncompact’ basis was elucidated. The
spectrum of such a noncompact generator always
consists of the entire real line and the corresponding
eigenvectors are nonnormalizable ‘‘ideal’” vectors.
The UIR’s of SU(1, 1) can be broadly separated into
two kinds, the discrete and the continuous; each of
these can be further split up into various subclasses.
These two kinds of UIR’s can be very simply character-
ized in the following manner: in every UIR of the
discrete kind, the O(l, 1) generator possesses one
eigenvector for each eigenvalue, while in every UIR

5 N. Mukunda, Ref. 4. We shall refer to the first of these papers
as (A).
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of the continuous kind, it possesses two linearly
independent eigenvectors for each eigenvalue.®

We here extend the above-mentioned work and
determine explicitly the ‘“‘matrices’ that represent
finite elements of SU(1, 1) in a noncompact basis in
which an O(1, 1) generator is diagonal. Let us refer
to the three independent elements of the Lie algebra
as Jy, Jy, and J,, where the first one is the generator
of the O(2) subgroup, while the last two are the two
independent O(1, 1) generators. We shall compute
the matrices that represent elements on the two one-
parameter subgroups generated by J, and J,, respec-
tively, in a basis with J, diagonal. It is obvious that,
if an element in O(2, 1) can be written in either the
form e*2e™1¢%t2 or the form e*/z2e#/oe®' 72 then
its representative matrixinthe noncompact basis would
be particularly simple. It is interesting to note that
the sets of elements which can be expressed in these
two ways are mutually exclusive (except for the case
y = u = 0), and, taken together, they do not exhaust
the entire group. That is to say, there is a set of group
elements which cannot be expressed in either of the
two ways given above. To compute their representa-
tive matrices, one could go back to the “Euler”
decomposition valid for a/l elements and then express
their matrices essentially as the product of two
matrices representing elements of the type e™”/o
together with an integration over a complete set of
eigenstates of J,.

As we have said earlier, there is a characteristic
difference in the eigenvalue and eigenvector structure
of J, in the discrete UIR’s, on the one hand, and the
continuous UIR’s, on the other. The former are in
one sense more simple, and in another sense more
complicated, than the latter. They are more simple
because in them J, possesses only one eigenvector
corresponding to each eigenvalue. They are more
complicated in that their “‘natural’ realizations in
function spaces involves Hilbert spaces of analytic
functions or boundary values of analytic functions,
whereas the continuous UIR’s can be ‘“naturally”
realized in Hilbert spaces of functions which are
square-integrable (L,) over a suitable domain.?
Consequently, it is natural to consider these two
cases separately. In the present paper, we consider
the discrete UIR’s, and in a succeeding one we deal
with the continuous UIR’s, treating both non-
exceptional and exceptional types. Some of the results
of this paper, namely, the matrices representing the

& The more familiar distinction between the discrete and the
continuous UIR’s is the statement that in the former the quadratic
Casimir invariant is quantized, while in the latter it can assume a

continuous set of values.
7 See, for instance, V. Bargmann, Ref. 4.
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elements e¢*#’¢ in the discrete UIR’s, have been
obtained recently by Barut and Phillips.® However,
since the methods of derivation are somewhat dif-
ferent and so as not to destroy the continuity of the
presentation, these results are included in this paper.

In Sec. 1, we review briefly the structure of the group
SU(1, 1) and its Lie algebra and then go on to deter-
mine the sets of elements decomposable in one of the
two forms given earlier. In Sec. 2 we determine the
matrices of the elements ™t in the basis with J,
diagonal; Sec. 3 is devoted to the identical problem
for the elements e*#7¢, It is convenient to work in a
specific realization of the discrete UIR’s and we
choose the one given by Gel’fand et al.® This allows a
uniform treatment of all the single-valued discrete
UIR’s of SU(1, 1), i.e., Df, fork =4,1,%,---,in
the notation of Bargmann. We will consider only
D in detail, the results for D, being obtained from
these essentially by complex conjugation.

Note Added in Proof: After completion of this paper,
the book Special Functions and the Theory of Group
Representations, by N. J. Vilenkin (American Mathe-
matical Society, Providence, Rhode Island, 1968),
has come to the author’s attention. The problems
treated in this and the following paper are also
considered in Chap. VII of this book.

1. PARAMETRIZATION OF GROUP ELEMENTS

Elements of the group SU(1, 1) are in one-to-one
correspondence with two-dimensional complex pseu-
dounitary matrices in the following way:

ga(;,, f,,), W= 1BE=1. (L)

The Lie algebra of SU(1, 1) is spanned by the three
elements J,, J; , J; obeying the following commutation
rules:

_i[JO’ Jl] = JZ’
—ilJy, Jo] = —Jy,
—i[Jl’J2] = —‘]0'

In every UIR of SU(1, 1), the J’s are linear self-
adjoint operators and the Casimir invariant Q,

(1.2)

Q=Ji+J; -5,

becomes equal to a real multiple of the identity
operator. The matrices representing the generators J;
and the one parameter subgroups e™’¢, ™1, and

(1.3)

8 A. O. Barut and E. C. Phillips, Ref. 4.

? 1. M. Gel'fand, M. L. Graev, and N. Ya. Vilenkin, Generalized
Functions,(Academic Press Inc., New York and London, 1966),
Vol. 5, Chap. VIIL.
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e%’2, in the defining two-dimensional representation
of SU(1, 1), have been listed in (A).

From (1.1) it is evident that a simple way to
parametrize the elements of SU(1, 1) is to introduce
three real variables &, ¢, v in the following way:

=cosh £ ¢, B =sinh& - e, (1.4
If we choose their ranges to be
0SE<®, "'”'<¢’a‘l’$77; (1'5)

we certainly obtain all the group elements. In order
to obtain them just once each, we restrict v to be
zero when £ vanishes. (This parametrization is trivially
related to the Euler-type decomposition.?) So we may
write an element g of SU(1, 1) as

g =g(& ¢, p).

Let us now consider the set of elements k(, », {'),
where

(1.6)

(L.7)

Each such element k({, v, ) is equal to a g(&, ¢, p)
for some set of values of £, ¢, y. We wish to determine
what part of the domain of variation of &, @, ¢ is
covered by considering the elements k({, v, (') as
each of the parameters {, v, {’ varies independently
from — oo to 4 oo. To discover this, all that has to
be done is to equate the two-dimensional matrix
representing the element in (1.7) to that representing
the element in (1.6) and to solve for &, ¢, and y. One
can check easily that the range of &, ¢, y that is
covered is symmetric under reflections in the ¢ and
y axes separately, i.e., under y — —y and ¢ — —¢.
It is, therefore, sufficient to consider the region
0 < ¢, p < 7. One then finds that, for each value of
&, the values of ¢ and y attainable by elements of
the form k({, v, {’) are bounded by a curve determined
by &:
0< ¢ <¢y=sintanh &, ¢ < 72,

~[1 — sin% ¢ coth? &)} < cos p
< +[1 — sin? ¢ coth? £}F. (1.8)

This can be represented as in Fig. 1; the shaded region,
together with its reflections in the ¢ and p axes,
consists of the set of elements of the form k({, », {').
It is interesting to note, among other things, that this
region does not contain any nontrivial element of the
form e®Jo,

Next we consider the set of elements #({, u, '),
defined as

KL, ) = 5T

h(L, p, ) = e5TretToe% T, (1.9)
7

and the region in the &, ¢, ¢ space covered by them.
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It is clear that this region and that covered by the
elements k({, », ') must be nonoverlapping since,
as we remarked earlier, the latter does not contain
any nontrivial element of the form e™J°. As before, one
can check that the region involved is symmetric under
both replacements ¢ — —¢, y — —y, and one may
restrict oneself to the domain 0< ¢, p <7 A
routine analysis then shows that the area covered by
the elements A({, u, {') is bounded in the following
way: For each value of &, all values of ¢ are attainable,
while for given & and ¢, y is constrained by the
following inequalities:

max (0, 1 — sin® ¢ coth? &) < cos? p

< min (1, cos? ¢ coth? £). (1.10)

(Note that these limits on cos? ¢ are always com-
patible.) Thus, for ¢ lying either in the range 0 to
sin~! tanh & or in the range = — sin~!tanh & to =,
cos® y is bounded below by 1 — sin? ¢ coth? £; and
for ¢ in the range 4w —sin"ltanh & to im +
sin~! tanh &, cos? p is bounded above by cos? ¢ coth? &.
This region can be depicted as in Fig. 2; to the shaded
region must be added those obtained by the reflections
¢ — —¢, p — —y in order to exhibit all the elements
of the form A(¢, u, &').

From these considerations it is clear that, as far as
elements of the two forms k({, v, {') and A(, u, {')
are concerned, their representative matrices in a
basis wherein J, is diagonal reduce essentially to
those for the elements /1 and e*/o, respectively
(and these will be computed in the following sections).
However, if we have an element g € SU(1, 1), which
is not of one of these two forms, the computation of
its representative matrix involves more work. In

principle, we could express such an element as
g _ ei[AJoefCJ|el'u'Jo

(1.11)

(which is actually a form valid for a/l elements g).
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Then the matrix representing g appears as the integral,
over intermediate eigenstates of J,, of the product
of the matrices corresponding.to e*Jo and o,
together with the factor e%”/2, which, of course, reduces
to a “plane wave.” In this paper, we shall not compute
the matrix corresponding to such a general element g.

2. MATRICES OF 0O(1, 1) TRANSFORMATIONS

The single-valued discrete UIR’s of SU(1,1) are
generally denoted by D} and D;, k running over the
values §,1,4,---. Both in D} and in Dy, the
Casimir invariant Q takes on the value k(1 — k).
However, in the former, the spectrum of J, consists
of the numbers k, Kk + 1, k + 2, -+, while in the
latter it consists of the numbers —k, —k — 1,
—k — 2,---. The representation D, is essentially
the complex conjugate of D;, and the same is then
true for the representation matrices. We may, there-
fore, restrict ourselves to the UIR’s of type Dj only.
Note that k and the eigenvalues of J, are simultane-
ously integral or simultaneously half-odd integral.
Except for the fact that, at certain points, the case
k = } has to be treated separately, the actual calcula-
tion of representation matrices goes through in a
uniform manner for all k.1

In the UIR Dj, the spectrum of the operator J,
consists of the entire real line, and, as stated in the
Introduction, there is just one eigenvector for each
cigenvalue.”* Thus we may introduce a basis in the
following way:

o lkysp) = plky; py,
ks p' | kysp) = 8(p" — p),

—o<p, pP<o (21
1¢ Recall that the UIR’s D;t are not needed in the Plancherel
formula for SU(, 1), whereas the remaining discrete UIR’s are
needed.
1 For details, see (A).
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(Note that, in contrast to the generator J,, the range
of the eigenvalues of J, is independent of k.) In this
basis, the one-parameter subgroups generated by J,
and J, are represented by ‘“‘matrices” with the con-
tinuous variables p’ and p playing the role of row and
column indices. We define

(kys Pl €Y1 Ky s py = FX(p, p;w),

(kys p'l €0k, py = S*(p', ps ). (2.2)
In this section, we deal with the determination of the
functions & ; in the next we deal with §.

The function F obeys the following second-order
differential equation with respect to the variable »'2:

d? d

— +cothy — + k(1 — k

|:dv2 Y dy ¢ )

P+ p* — 2p'pcosh»
sinh® »

¥ @ pin=o

(2.3)

This equation possesses two linearly independent
solutions which we shall call ¢, and ¢,3:

éu(k; p's p;v)
— (COShz %v)i(p’+n)/2(sinh2 %v)i(p’—n)/Z
x Flk+ip,1 —k+ip;1+ip —ip; —sinh®}y),
éo(k; P, p5 v)
— (COSh2 ]2_1,)1‘(1:+p')/2(sinh2 %v)i(p—zt’)/z
X F(k+ip,1 —k+ip; 1+ ip—ip’; —sinh® }»),
bolk; p', psv) = dilk; p, P53 v) = du(k; P, p; v)*
2.4)

(where F is the hypergeometric function). ¥ is a
linear combination of these two solutions. To deter-
mine it, we turn to the specific realization of the
UIR’s Dj as given by Gel’fand et al.?

The Hilbert space J,, in which the UIR D} will be
set up, consists of functions f(x), which are boundary
values on the real axis of functions that are analytic
in the upper half-plane, and for which the inner
product is defined in the following way for k = }:

(ho gy = @ [ a0
for k > 4 we have

_ (21r)—2e—i7rk

Tl O \2h—2
hy e = T2k = 1)f_mdx f_wdxh(x) (x' — x)

X In(x' — x — ie)f(x). (2.5)

12 This may be derived by using, for example, the methods
described by J. F. Boyce, R. Delbourgo, A. Salam, and J. Strathdee,
‘Partial Wave Analysis (Part 1),”” ICTP Preprint 1C/67/9, Trieste,
1967.

13 Note that both functions ¢, and ¢, are, by definition, even
functions of v.
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If we pass to the Fourier transforms of f(x) and A(x)
defined via

£(x) = f " aren (), (2.6)

then the scalar product has a uniform appearance for
all k:

()= "arr-siarie. @)
0

In the UIR Df, the element g, corresponding to a

matrix as in (1.1), is represented by a unitary operator

U(g) which acts on any vector f € IC, as follows!*:

(mr + ﬂr - (“i + ﬂi)x)~—2k
o — Bi + (2, — Bo)x
. (2.8
8 f(ar + /31' - (ai + ﬂi)x) ( )

(¢, and «; are the real and imaginary parts of «,
similarly for f.)

We can now use Eq. (2.8) to determine the normal-
ized eigenfunctions of J,, corresponding to the kets
defined in (2.1). They turn out to be

ko5 Py g,(x) = @) be 7 Dk + ip)] (x + i)™,
F,(1) = (2W)—%ei[nk(p)—%kn]zk+ip—1, (2.9)

W) f1(x) =

n(p) = arg ['(k — ip).

Employing these explicit expressions and using (2.8),
we can write down an integral representation for the
matrix 5. We have

\T(k+)(p’, p; V) — (277)-—281'[%7“!—'”:(2)')]”%1)7r lF(k + 1p)|

X f dl/l"‘““’f dxe 1
0 —o0

x (cosh 1y — (x + ie) sinh ») %

—k—Up
+ ie) .

(2.10)

(x cosh v — sinh 3
cosh vy — x sinh {»

In this expression, the ie’s have been retained to
remind us that in x space the functions we are dealing
with are boundary values of functions analytic in the
upper half-plane. Now, rather than explicitly evaluate
this integral, it is much easier to compute the asymp-
totic value of F as, say, » — + 00, and then find out
what linear combination of ¢, and ¢, reproduces this

14 In Ref. 9, the formulas are appropriate to a discussion of the
group SL(2, R). We have transcribed them so as to express things
in the language of the group SU(l, 1). These two groups are, of
course, isomorphic. Note that the parameter S in Ref. 9 is related
to our k via § = 1 — 2k.
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asymptotic behavior.’® From (2.10) we obtain

$rip—p)

FEAp, pyv) T 5
mw
I'(2k)

(Note that the asymptotic form of F as » - — 0 is
different from the one above.) After some algebra,
we find that the proper linear combination of ¢; and
¢, for » > 0 is the following:

(‘(k+

', piv)
— e;n(p p)(z,”)~l
X [ei[nk(z))—nk(p’)lp(,-p _ ip')¢1(k; p', p:v)
+ IO (ip — ip)dy(k; p', p; 9)]-
For negative values of », one may either obtain the
asymptotic form from (2.10) and repeat the procedure

described above or, more simply, one may use the
formula

(2.12)

r»(k+

¥, psv) = [F*p, p's —0)I%,  (2.13)

which follows from the unitarity of the operator
U(e?*”1), One then obtains, for » < 0,

r*(k_,_

"', p; )
%n(p _»

= =5 (™ — ip)hu(k; ', 3 9)

+ eI ip” — ip)go(k; P, pi 9))-

This completes the evaluation of the “matrix elements™
of the operator U(e®”1) in the basis with J, diagonal.
One may check from (2.12) and (2.14) that, as v — 0
either via positive or negative values, one has the right
boundary value for 5:

(2.14)

im F5(p', psv) = 0(p' — p).  (2.15)
v=0
The identity needed to establish this is
lim @™ siri aR = 7(a). (2.16)

R-ow

Combining (2.11), (2.12), and (2.14), we can express
the behavior of ¥ as » — 4- o in the single formula

FENp', p;v)
_ o TR0 IT(k + ipHT'(k + ip)|4ke—klv|_

(2.17)

15 For details concerning the hypergeometric functions, see, for
instance, Higher Transcendental Functions, A. Erdélyi, Ed. (McGraw-
Hill Book Co., New York, 1953), Vol. 1, Chap. IT; N. N. Lebedev
Special Functions and their Applications (Prentice-Hall, Inc.
Englewood Cliffs, N.J., 1965).
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We denote the corresponding ‘‘matrix elements”
of /1 in the UIR Dy by F%-)(p’, p; »). These may
be taken to be just the complex conjugates of
FwD(p’, p; v) together with a change in the sign of ».
However, from (2.12) and (2.14), we see that the latter
functions are real. Hence, we have

FEAp, pyw) = FE5(p, ps —v). (218)

3. MATRICES OF 0(2) TRANSFORMATIONS

We now turn to the evaluation of the matrix
elements of e?*’o namely, the functions §*+'(p’, p; u).
Similar to (2.3), one can establish the following
differential equation for G!2:

d? d
+cotpu— — k(1 —k
[d/t2 T ( )

2 2 ’
+ p® — 2p'pcos ,
+ LT E_ZPF ”]‘3"‘+’(p,p;u)=0-
sin® u
3.1

Let us define two linearly independent solutions w,
and y, to be!®

(ks P’ P )
— (C052 %‘u)%i(n'-(-p)(sirﬁ %Iu)%i(q/—p)

X Fk + ip', 1 — k + ip'; 1 + ip' — ip; sin® }p),
vk P’y ps 1)
— (0082 %‘u)ii(m—az’)(sin2 %Iu)ii(p—-a)’)

X F(k + ip,1 — k + ip; 1 + ip — ip'; sin® }u),

vk ' ps ) = (ks p, p's ) = wy(k: p', ps w)*.
(3.2)

Then, G is a certain linear combination of v, and yp,.

Let us now use the realization of the UIR’s D}
described in the previous section. We can show quite
easily that

U™ |k, ; p) = ¢™ |k, ; —p), 3.3)

which is essentially what we would expect to find.
Using this result, we can show that

SEAp', s 7+ ) = €T, ~piw). (3.4)

This means that it suffices to compute § for the
range 0 < u < ; its values elsewhere can be obtained
by use of (3.4). Analogous to (2.10), we can write

18 Both y, and y; are, by definition, even functions of u.
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down an integral representation for G:

g(k+)(p" pu) = (2”)—2ei[§kr—ﬂk(p')]—%pv IP(k + ip)

s f dANTF f dxe e
[1] —0o0

X (cos 3u — (x + ie) sin §p

x cos 3u + sin } L\
x ( Flad : 14 T e
cos ¢ — x sin 3y

)—2k

(3.9)

We could now use this representation to extract the
“asymptotic behavior’ of §; but this time, we have to
go outside of the group to do this. Guided by the fact
that the factors appearing on the right-hand side of
(3.5) are boundary values for real x of functions
analytic in the upper half-plane, we make cos u and
sin 3 go to infinity in the following way:

costu = A, sinfu~=+iA, A—> 4. (3.6)
This analytic continuation corresponds to the follow-
ing: We start with a ““sensible’” value of y in the range
0 < p < =, such that 0 < A < 1. We now make A
go to infinity along the positive real axis avoiding,
however, the point A = 1 by making a small detour
into the lower half of the complex plane around
A = 1. This specifies the way in which sin g is to
be continued and is such that the functions of x
appearing on the right-hand side in (3.5) always have
singularities only in the lower half-plane. With this
prescription, (3.5) yields

U Ttk + ip)T(k + ip)| . _
g%y p: — AT,
(P 352" 5, T'(2k)

(3.7)

As before, we can now determine the proper linear
combination of the functions y, and v, that will
reproduce this asymptotic behavior.’® In this way
we find, for0 < u < m,

e%n'(m’—p)
27

x U'(ip — ipypu(k; p', p; )

+ (2,”)—16,%1:(0—1:')ei[qk(p’)—nk(p)]

x L(ip" — ip)pyk; p', psp). (3.8)

At the limiting values u = 0 and =, we recover the
expected boundary values of G:

§*Np', p;0) = &(p’ — p),
S, p3 m) = €™(p’ + p).

To evaluate S for other values of u, we now use (3.4).

(j(k+’(p', p; 'u) = ei['u;(ll)-’n.»(l)')]

(3.9)



2092

We obtain, for 7 < u < 2w,
Q(’”)(p', p; #) = ezn'k(zﬂ,)—leit(p—ﬂ')ei[qk(ﬂ)—mg(p’)]

x T(ip — ipypi(k; p', ps 1)

+ ezn‘k(zﬂ_)—leé‘r(p’—p)ei[qk(p’)~nk(ﬂ)]

x L(ip" — ip)pek; p', p; ). (3.10)
This completes the evaluation of G for the cases when
k is integral, for then the relevant range of u is just
0 < p < 27. For the cases when k is half an odd
integer, we need only realize that increasing u by 2=
amounts to an over-all signchange of G in such UIR’s.

Last of all, we evaluate the G functions for the UIR’s

D;. These are just complex conjugates of what we
have obtained above. So, for 0 < u < =, we find

Q(k_)(pl, pip) = (2ﬂ)—le%v(p—p')ei[qk(p)_,,k(,,')]
x I(ip — ipywi(k; p', p; )
+ (2,,r)—le%:(p'—p)ei[.,.,(p')—m,(p)]
x D(ip’ — ip)ya(k; p', p; )
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and, for r < u < 27,
g(k_)(pr’ p;y) = 2vik(2")—leit(w'—p)ei[nk(p)——qk(n’)]

x D(ip — ip)yyu(k; p', p; )

+ eZFik(zﬂ)—leé‘r(ﬂ—p')ei[qk(ll',—'lk(ﬂn
x D(ip" — ip)ypo(k; p', p; ). (3.11)
It is interesting to see that, whereas the spectra of the
noncompact generators J,, J,, [but not the matrices
representing the O(1,1) elements e3] do not
distinguish between the two kinds of discrete UIR’s
Df and D, there is a characteristic difference in the
matrices representing the elements e?*7¢ of the compact
O(2) subgroup. Such a difference is definitely expected,
because the generator J, has different eigenvalues in
the two cases.
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The representation matrices in a noncompact basis for finite elements of the group O(2, 1) are deter-
mined in the continuous classes of unitary irreducible representations. Integral as well as half-integral, and
exceptional as well as nonexceptional, representations are treated.

INTRODUCTION

In the previous paper,! referred to hereafter as I,
we have determined the matrices that represent finite
elements of the three-dimensional Lorentz group
0(2,1) in any unitary irreducible representation
(UIR) of the discrete classes, and in a basis in which
a “noncompact’ (hyperbolic) generator of an O(1, 1)
subgroup is diagonal. Here we carry out a similar
determination of the representation matrices in the
remaining classes of UIR’s, namely, the continuous
nonexceptional and the continuous exceptional classes.

In any nontrivial UIR of O(2, 1), the generator of
the O(1,1) subgroup has a continuous spectrum,
every real number appearing as an eigenvalue. Corre-
spondingly, the eigenvectors are all nonnormalizable.
In the discrete class UIR’s there is just one eigenvector

1 N. Mukunda, J. Math. Phys. 10, 2086 (1969), preceding paper.
See this paper for further references.

corresponding to each eigenvalue, while in the con-
tinuous class UIR’s there are two linearly independent
eigenvectors for each eigenvalue. The determination of
representation matrices that was carried out in (I)
suffers from the inherent ambiguity that results from
the freedom to change at will the relative phases of the
orthonormal eigenvectors of the noncompact O(1, 1)
generator. We therefore chose to carry out the calcu-
lations using a specific realization of the UIR’s
involved. In the UIR’s of the continuous classes, this
type of ambiguity is increased because we have two
independent eigenvectors for each eigenvalue of the
hyperbolic generator, and one is therefore free to
make two-dimensional unitary transformations mixing
the pair of eigenvectors that go with each eigenvalue;
one could go even further and make these transforma-
tions dependent on the eigenvalue. We resolve this am-
biguity by once again working with specific realizations
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of the UIR’s involved. The choice of eigenvectors is
motivated by simplicity in these realizations, and the
representation matrices we compute may differ from
alternate computations by a transformation of the
type described above.

We shall actually consider single-valued UIR’s of
the group SU(1, 1), which amounts to considering
both single- and double-valued UIR’s of 0(2,1);
these are generally the UIR’s relevant in physical
applications where the O(2, 1) group often appears as
a subgroup of a larger group like O(3, 1). In Sec. 1,
we set up the notation, and then consider the con-
tinuous nonexceptional UIR’s of integral type. Section
2 deals with the continuous UIR’s of half-integral type
and the concluding Sec. 3 with the continuous UIR’s of
the exceptional interval.

1. NONEXCEPTIONAL INTEGRAL UIR’S

The continuous class UIR’s of SU(1, 1) break up
into three types: (i) the integral nonexceptional type,
wherein the quadratic Casimir invariant Q lies in the
range } < @ < o and the compact O(2) generator
Jo has all integers from minus to plus infinity for
eigenvalues; (ii) the integral exceptional type, wherein
0 < @ < { and the generator J, has the same eigen-
values as in type (i): and (iii) the half-integral type,
with } < @ < « and J, having all half-odd integers
for eigenvalues. Conventionally, types (i) and (ii)
are together denoted as C? with g > 0 being the value
of 0, and type (iii) is denoted as C;} »q > 1. Elsewhere
we have shown how one can diagonalize the hyper-
bolic generator J, in UIR’s of types (i) and (ii).>2 A
straightforward extension of those methods accom-
plishes the same purpose in UIR’s of type (iii).

In every one of these UIR’s we can introduce a
basis of eigenvectors of the O(1, 1) generator J,. We
shall have to use slightly different notations in the
nonexceptional UIR’s (integral as well as half-integral),
on the one hand, and the exceptional UIR’s, on the
other. For the nonexceptional cases, we shall set

0=1%1+5, (L1

with 0 < s < oo for the integral case and 0 < 5 < o
for the half-integral case. We refer to the cigenvalues of
J, by p, p’, - -+, and use the letters a, b, - - - (taking
the values 4+ and —) to distinguish the two eigenvec-
tors for each eigenvalue. Thus the basis vectors for a
nonexceptional integral UIR will be

|S:0;P,a>, SZO, _®<P<w,

a=+’_9

(1.2)

2 (a) N. Mukunda, J. Math. Phys. 8, 2210 (1967); (b) 9, 417
(1968).
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and they obey the following équations:
Je15,0;p,a) = pls,0;p, a),
(s,0;p',b|5,0;p,a) = 8(p’ — p)by,.  (1.3)

(The zero signifies the integral type.) For a non-
exceptional half-integral UIR, the basis vectors will be

Is,3;p,a@), s>0, —0o<p< oo,

(1.4)

and these obey equations analogous to (1.3). We
define the representation matrices corresponding to
the one-parameter subgroups ¢/ and e+ as follows:

a=+,_a

(s,&;p', bl ™1 |s, s p, @) = FE(p', p; ),
(s,e;p, bl e*0|s, e; p,a) = S(p', p;p), €=0,4.
(1.5)

Jy is the “compact” O(2) generator and J; the other
0(1, 1) generator.

Turning to the exceptional UIR’s, here we write 0
in the form

0=4%—-0% 0<o<}, (1.6)

and the basis vectors as

lo;p,a), (o;p',b|o;p,a)=06(p — P)op>

ba=+,—. (1.7)
The representation matrices will be
(@: 9, bl ™ o; p, a) = F2(P, p; ),
(7', bl "7 |0 p, @) = S0P, p3 ). (1.8)

For the functions defined in (1.5), one can establish
second-order differential equations in » and u.2 These
are the same for both choices of ¢, and read

p’? + p* — 2p'pcosh 1]
sinh? »

[d—2+cothvi+1+s2+
art dv 4

X FE(p, p;v) =0, (1.9a)

2 1 2 2 ,

[—+cot,ui_—_s2+1’ +pr prcosy]
4 sin® u

X Su(p', p;p) = 0. (19b)

To conform with the conventions set up in I, we
shall choose the linearly independent solutions of

3 For the method of derivation, see, for example, J. F. Boyce, R.
Delbourgo, A. Salam, and J. Strathdee, “Partial Wave Analysis
(Part I),” ICTP Preprint IC/67/9, Trieste, 1967.
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these equations to be the following: for (1.9a),
$i(s; ', P )
= (cosh? 1») " +#/2(sinh? Ly)titr—»
X FG+is+ip,3—is+ip;
1 4 ip’ — ip; —sinh® 1»),

$ols; p', 3 v). (1.10)
= (cosh? %v)%"(”“’"(sinhz %v)é’i(n-p')
X F(}+is+ip,4 —is + ip;
1 + ip — ip’; —sinh® L),
baols; P’ 3 ¥) = $uls; p, P'5 9);
and, for (1.9b).
puls; P, s )
= (cos? %ﬂ)%i(z)’+p)(sin2 %Iu)%i(p'—p)
X FA4+is+ip, 1 —is+ip;
L+ ip’ — ip;sin® §p),
ve(s; P, Ps 1) (1.11)

= (cos? %/t)%"”'“")(sinz %‘u)%i(p—p’)
X F(3 +is+ip, 3 — is + ip;
1+ ip — ip’; sin® jp),
vos; Py ps ) = ul(s; p, D' )

Our aim is to express each of the & functions as linear
combinations of ¢, and ¢,, and each of the § functions
in terms of y, and y,. In the remainder of this section,
we do this for the UIR’s of the continuous non-
exceptional integral type.

Let us set up an explicit realization of these UIR’s
following the work in Ref. 2(a). We have a Hilbert
space ¥ whose elements are pairs of functions of a
real variable ¢ running from — o0 to +00:

S (h@ 112
The scalar product of the vectors f and h is
k=3 [(dan@n@ 13

The representation corresponding to a given value of
s is specified adequately by stating the way the elements
of the one-parameter subgroups act on f. Letting g
denote in turn the elements %72, /1, and e*/°, U(g)
the corresponding unitary operator, and h = U(g)f,
we gett the following for g = ¢%/2:

hr(q) =f;-(q + g)’ r=1,2.

4 These formulas are obtained by extending the method described
in Ref. 2(a) from the Lie algebra to finite group elements.

(1.14)

N. MUKUNDA

For g = ¢™/1, » > 0 we have the following:
Forallg, h,(q) = (cosh v + cosh ¢ sinh vy, (¢"),
e’ = (e* + tanh }»)/(1 + e®tanh }v); (1.15a)
for g > In coth v and for ¢ < In tanh »:
hy(g) = (cosh ¢ sinh » — cosh v)’%“isfl(q’),
e’ = (e — tanh 3v)/(e’ tanh v — 1); (1.15b)
for In tanh }» < g < Incoth 4»:
hy(q) = (cosh » — cosh g sinh »)#=%f,(¢"),
e” = (e” — tanh }»)/(1 — e“tanh }v). (1.15c)
For g = /0, 0 < u < 7 we have the following:
For —ow0 < g < Incot u:
hi(q) = (cos s — sinh g sin ) H1,("),
e’ = (e + tan }u)/(1 — e%tan Ju); (1.16a)
for Incot ju < g < c0:
hi(q) = (sinh q sm . — cos )y F(q"),
e? = (e? + tan ju)/(e’ tan 3u — 1); (1.16b)
for Intan ju < g < co:
ho(q) = (cos p + sinh g sin u) = (q"),
e” = (e’ — tan u)/(1 + e%tan ip); (1.16c)
for —oo < g < Intan §u:
hy() = (—cos s — sinh g sin uy41,(q),
e? = (tan iu — e9/(1 + e%tan fu). (1.16d)

Using these formulas, one can obtain the ones that are
valid for the other ranges of » and u.

We choose the linearly independent eigenvectors of
J, in the following way:

S eiﬂq
s, 05 p, ) — (4w)—f(iem). (1.17)

For the UIR’s of the exceptional type, we will see that
we have to choose the basis in this way; therefore, to
make things as uniform as possible, we adopt the
same basis in the present case also. With this, we can
use (1.15) and (1.16) to express the 5 and § functions
in the form of integrals over ¢. As an example, we have

FEOW', p3 v)
= (471)‘1J dge™**"%(cosh v + cosh g sinh p)~tis

N ( e? + tanh i )“’
1 4 e tanh v

+ (471-)_1 dqe—ip'a |cosh » — cosh g sinh ‘UI_%_“

— 00
e? — tanh v

1 — e“tanh {»

ip

(1.18)
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Similar expressions for the other & functions may be
written down. We can now either explicitly evaluate
these integrals and express them as linear combinations
of ¢, and ¢,, or alternatively we may extract the
asymptotic behavior, as ¥ — 00, of these integrals and
then set up the appropriate linear combinations of
$, and ¢, to reproduce this behavior.® The latter
procedure is somewhat easier in the present case, and
in this way we obtain the following results:

vy > 0:
F:V(p's p; 7)
= Q2m) TG + ip’ + is)T'G — ip — iT(ip — ip)

% [cosh #(p + s) + ba cosh =(p’ + s)

+ ibsinh =(p — p")d:(s; p', p; )

+ QTG — ip’ + I + ip — is)L'(ip’ — ip)

X [cosh #(p — s) + ba cosh =w(p’ — s)

+ ib sinh #(p" — p)lga(s; p's p;¥), b,a=+, —;
<0

FuOp, p;v) = [F&0p, p's —)I*.

One can check that these expressions, which have been
obtained using the knowledge of their values for large
», have the proper boundary values for » = 0:

FEOp', p; 0) = 8,0 — p).

Turning next to the § functions, we give as an
example the integral obtained for §, ., in the range
0L

(1.19)
(1.20)

S40, ps )
= (4n)7! f dqe™"'%|cos u — sinh g sin ,u}_%“'s

—00
ip

e’ + tan u
1 — e“tan 1u

+ (@Am)|  dge=*?|cos u + sinh g sin | ¥
_ 1

e — tan ju [|*®

(1.21)
1 + ¢“tan $u

Similar expressions for the other components of G,,
can be written down. By changes of variable, these
can be thrown into standard integral representations
of the hypergeometric functions. The final expression

3 The necessary properties of the hypergeometric functions are
contained in Higher Transcendental Functions, A. Erdélyi, Ed.
{(McGraw-Hill Book Co., Inc., New York, 1953), Vol. I. Also in
N. N. Lebedev, Special Functions and Their Applications (Prentice-
Hall, Inc., Englewood Ciliffs, N.J., 1965).
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of § in terms of y, and yp, is
0<puLm
S "(p', p; 1)
= Q2n)T@G + ip’ + is)['} — ip — is)L'(p — ip)
X [cosh #(p’ + s) + ba cosh #(p + s)
+ ia sinh =(p — p)lyi(s; P, p5 1)
+ Qm)~°TG — ip’ + il + ip — is)L'Gip’ — ip)
X [cosh m(p — s5) + ba cosh #w(p’ — 5)

+ ibsinh =(p’ — p)lys(s; P, i), b,a =+, —;
m<pu L2

S (', s ) = [85°(p, p's 27 — W]*. (1.22)
This completes the evaluation of the representation
matrices for the UIR’s of the integral nonexceptional
class. From (1.22), we note that § assumes the follow-
ing values for 4 = 0, 7, and 2=

8V(p', p; 0) = SV(p', p; 2m) = 8, 0(p' — ),
GOp', py m) = adyd(p' + p), b,a=+,—.
(1.23)

As expected, in these UIR’s the element €*"i/o is
represented by the identity operator.

2. HALF-INTEGRAL UIR’S

We treat in this section the UIR’s of the continuous
half-integral class. The corresponding representation
matrices are defined in (1.5). They obey the same
differential equations, namely (1.9), as do the func-
tions in the case of the continuous integral nonexcep-
tional class, so that we can still use the basic set of
solutions written down in (1.10) and (1.11). Since the
two kinds of UIR’s, integral and half-integral, share
the same spectrum properties for J, and the same
values for the Casimir operator Q, it will be interesting
to see just at what point the representation matrices
exhibit a difference.

Let us first describe the construction of the UIR’s
C} analogous to the construction in the previous
section.® The Hilbert space J and the definition of the
inner product are the same as before, being given by
Egs. (1.12) and (1.13). Let the real function &(g) be
defined in the following way:

&(g) = iln [(e* + i)/(e* — D],
E(—o0) = —w, &(0)=0. 2.1)
Then, continuing to denote the vector U(g)f by h for
various choices of the element g, Eqs. (1.14) and (1.15)

¢ We have applied the technique given in Ref. 2(a) to the con-
struction of these UIR’s as found in V. Bargmann, Ann. Math. 48,
568 (1947).
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are replaced by the following set:
g = ez
hy(g) = @O (g 1,
hg) = @8y (g 4 1)
g=¢ée"1,9>0.

(2.2)

For all g we have the following:

hy(q) = eéz’[é(a')—thn(cosh » + cosh g sinh v)‘*""fl(q'),
e’ = (¢° + tanh 1»)/(1 + € tanh }v); (2.3a)
for ¢ > In coth }v:

ha(q) = 8@+8@Ycosh g sinh v — cosh vy Ef,(q"),
e” = (¢ — tanh }»)/(e? tanh }» — 1); (2.3b)
for In coth 4» > ¢ > In tanh }»:

hy(q) = @5 cosh » — cosh g sinh v)‘*""’ﬁ(q’),
e? = (e — tanh }»)/(1 — e tanh }v); (2.3¢)
for In tanh §» > ¢:

ho(9)

= — B8 ook g sinh v — cosh ¥ E(q),
¢’ = (tanh }» — e9/(1 — €°tanh }»). (2.3d)
For the case g = e**/o, it is not necessary to write out
the expressions for h.(g) in detail, since the only
change from the previous situation is that Eqgs. (1.16a)-
(1.16d) all acquire an extra factor e*/2 on the right-

hand side.
With the help of (2.2), we choose the eigenvectors of

J, in the following way:
preess LU

Is,4; p, £) — (4‘”)_* (:teimiﬁ(a)) - @24

Using this explicit construction, we can once again
write down the ¥ and G functions in the form of
integrals. These turn out to be very similar to what
we had previously, the same integrals appearing in
different linear combinations. Omitting details, we
quote the final expressions:

vy 2> 0:
FePw, p;7)
= Qm)TQ + ip’ + iT'G — ip — is)[(ip — ip")
X [cosh n(p + s) + ba cosh n(p’ + 5)
+ ib sinh w(p — p)ldu(s; P, p; ?)
+ 277G — ip’ + i9TQ + ip — is)I'(ip’ — ip)
X [cosh #(p — s) + ba cosh #(p" — s)
— ibsinh n(p’ — p)lds(s; p', p;7), b,a= +,—;
» < 0:
Fe pin) = 1F5P@. P -1 @9)

N. MUKUNDA

Comparing this with the expression for FE0(p’, p; 7)
given in (1.19), we see that the only difference is that
the third term in the square bracket multiplying ¢,
has changed sign. For S, we have:

0<u<m:

b, pi )

= Q2m T} + ip’ + is)P'G — ip — is)T(ip — ip)
X [cosh #(p’ + s) + ba cosh =(p + s)
+ ia sinh =(p — plwi(s; P, s )
+ Q@m)'TG} — ip’ + PG + ip — is)L(ip’ — ip)
x [cosh 7(p — 5) + ba cosh =(p’ — )
— ib sinh =(p" — p)lwy(s; p', p; p)- (2.6)

Here again, on comparison with the form of §t-0
given in (1.22), we see that the third term in the
square bracket multiplying v, has changed sign. To
extend (2.6) to other values of u, we first find the
limit as u — 7 of the expression given in (2.6). In
contrast to (1.23), here we get

P, pim =8P, pim) =0,
Py, p; m) = —6¢ P, ps m) = 80" + p). 27)
Thus, as is to be expected, in the Cf representations
the element e***/¢ is represented by the negative of the
identity operator. So we can extend (2.6) in the follow-
ing way:
< u< 2

seP(p, psp) = —185P(0, 13 27 — WI*, (29)

the extension to the range 27 < u < 4 being obvious.

3. EXCEPTIONAL UIR’S

In this final section we consider the case of the
continuous exceptional UIR’s. These are labeled by
the parameter o lying in the open interval 0 < o < 1.
The corresponding representation functions are de-
fined in (1.8) and obey

+l_2y P+p = 2’p’pcoshv]
sinh® »

x Fip,p;v) =0, (3.1a)

P’ + p*—2p'pcos #]
sin® u

x S2(v', p; ) = 0. (3.1b)

These equations are the same as (1.9) with s replaced

by —io. We therefore choose the basic solutions by
the same replacement in the functions defined in

[—d:— + coth » 4
dr’ dy

d? d 1
— tcotu——=-++
[d,ﬁ “au ™ 4
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(1.10) and (1.11). We define

$:i(o; P, p; 7)
— (cosh’ %‘v)h(”'ﬂ’)(sinhz %v)ii(n'ﬂ’)
XFG+o+ip,3—o+ip;
1 4 ip’ — ip; —sinh® }v),
¢(o; P, p3 9) (-2
— (coshz %v)ii(nﬂl’)(sinh? %v)h(p—w')
xF}+o+ip}—o+ip;
1 + ip — ip’; —sinh® }»),
$a(0; P, P; %) = dilo; P, P 7),
and
G 29 HD)
— (COS’ %,u)*“"’“’(sinz %")ii(n’—v)
X FG+o+ip,3—o+ip';
1 + ip' — ip; sin® }p),
ve(o; P, P 1) (3.3)
= (cos® %ﬂ)ii(ﬂn')(sinz %ﬂ)*i(p—ﬁ')
XxFl+o+ip}t—o+ip;
1 4+ ip — ip’; sin® §p),
vo(o; ', p; ) = vi(o; p, P'; ).
In Ref. 2(b) we have shown how one can write the
exceptional class UIR’s of O(2, 1) in a basis suited to
diagonalization of J;. We have a Hilbert space X,
whose elements consist of pairs of functions of the
real variable g running from — oo to + oo:

T

The inner product of two vectors f and 4 depends on
¢ and is defined as follows: Let f.(q) be defined by

(.4

f9) = A £ (), (3.5)
and similarly for A. Then,
w3 o]
X h(q')*Ky(o; ' — 9)f,(q),
K@) = dpenoip, GO

A(o;p)=TEF — o+ ipl'Q — ¢ — ip)

X [cosh #wp £ sin wo].

Notice that in the ¢ space the scalar product is non-
local and translation invariant, while in p space it
becomes local. Next we must give the effect of the
unitary operators U(g) on an arbitrary vector f. If we
write as before h = U(g)f, then the components
f(q), r = 1, 2, are given in terms of f,(q) by the same
equations as in the case of the integral nonexceptional
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UIR’s C? with the replacement everywhere of s by
—io, namely by (1.14), (1.15), and (1.16) with s — —io.
Thus the effect of U(g) has a uniform appearance if
we specify a vector f by its components f,(g) and fy(q),
whether we are dealing with the nonexceptional or the
exceptional set of UIR’s.” However, in order to
“diagonalize™” the expression for the inner product,
we have to pass to the functions f, (¢) in the exceptional
case. The orthonormal eigenvectors of J, have now to
be chosen as follows:

eim
los p, £)— [27rAi(6;P)]‘*( iem)-

This choice is determined by the structure of the scalar
product.

Using this explicit construction, we could express
F@ and G in the form of integrals. As an example

we find, for v > 0,
I:A+(‘7 P')]
9 p)

3.7

r-(a')

@, p;v) =

dge **Ycosh v + cosh g sinh »)™ i

(L.
" ( €" + tanh 1y )
1 + € tanh }»
+f €**?|cosh ¥ — cosh g sinh v}~ 4
_ ip
" —tanh }y } (3.8)
e“tanh v — 1

On examination [see (1.18)] these integrals are the
same as those encountered in the continuous non-
exceptional classes, with s — —io, and for o in the
open region 0 < ¢ < 4, it turns out that their values
too are obtained from the previous expressions by just
replacing s by —io. This is true for all the integrals
we need to evaluate, both for ¥ and for §. After some
algebra, we finally get:

v > 0:
Fip's p; v)
= 2m){Ay(o; P)/Ado; PIF
x '} + o + ip)I'(} — o — ip)L\(ip — ip)
X [cosh m(p ~ io) + ba cosh =(p’ — io)
+ ib sinh m(p — p)]éy(o; ', p; %)
+ Qm[Ao; p)ALo; P
X I'G+0—ip)'G — o + ip)l'(ip’ — ip)
% [cosh #=(p + ic) + ba cosh m(p' + io)
+ ib sinh 7(p’ — p)l¢s(a; P, p; ¥);
7 We could, of course, have worked with the combinations £;(q),

instead of f,(¢) and fy(g), even in the continuous nonexceptional
UIR’s without spoiling the structure of the scalar product.
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» < 0: < p <2
s . g(rr) ', ; — g(a) , . - * — —.
FOW, 09 = [FS . s —IF, ba=+,—; w @ PW=80p2m =0 ba -(Fs 10)
(39 This completes the evaluation of the representation
O0<u<m matrices for the exceptional continuous class of UIR’s
s of SU(1, 1). This class is defined for values of the
S (P> P5 1) parameter o in the open interval 0 < o < 4. However,
= 2 [Ay(0; p)/A (o3 p)]% if we extrapolate the expressions given in (3.9) and

. N ) ) . (3.10)for F( and §'°) to the point ¢ = 0, we see that
X TG + 0+ ip)T'G — o — ip)l'(ip — iP')  they coincide exactly with the representation matrices

x [cosh m(p’ — ic) + ba cosh m(p — ic) F (s.0) and G of the continuous integral nonexcep-

o , ' tional series evaluated at s = 0. [See (1.19) and (1.22).]
+ ia sinh #(p — p')ly:(o; P', ps 1) Further, for ¢ = 0, the two weight functions A (o} p)
+ Q@Y Ao; p)A(o; p)]% become equal and independent of p, so that the kernels

) ot ) L K,(0; q) appearing in (3.6) reduce to delta functions.
X TG+ o —ip)'G — o +ip)'GP' — ip)  All these properties are in agreement with the state-
% [cosh m(p + io) + ba cosh m(p’ + ic ment that the continuous nonexceptional integral
[ (P ) (P ) UIR’s and the continuous exceptional UIR’s “meet”

+ ib sinh m(p’ — p)ly.(0o; D', p; p); at the point s = 0 = 0.
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Further Note on Two Binomial Coefficient Identities of Rosenbaum

DaAvib CHIANG
Université Laval, Québec, P.Q., Canada
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This note gives additional condition to the finding of Gould on two binomial coefficient identities
of Rosenbaum.

Using the I' function to examine the binomial trie if x or y or (x + y) is a negative integer, in
coefficient,! when x is an integer and n is a nonnegative Eq. (4),

integer, it is found that i (x)( y ) _ (x + y)

x =o\k/\n — k n

(n) =0 0sx<m, and if x is an integer, in Eq. (5),

(’C) =1, x=n, (—x) =(_1),.(x+n—1)_
n n n

(x) =1 n=0. x>0 Considering the expression
,, =262 =)
X . . = z = >

( ) = indeterminate, x <0, x # n. n=o\ n /\aa—n o
n

it is evident that it will be null when e is a noninteger,

Therefore, Eqs. (4) and (5) of Gould? will not hold while in addition « and » are integers.and at the same

- time « > 0, n > 0. This differs from the conditions
1 D, M. Rosenbaum, J. Math. Phys. 8, 1973 (1967).

2 H. W. Gould, J. Math. Phys. 10, 49 (1969). mentioned by Gould.?
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An expression for the joint distribution of the complex poles of the unitary collision matrix is derived
for the single-channel case, which is valid for all values of the ratio of the width to the spacing. The
derivation uses the statistical distribution of the parameters of the real R-matrix theory. We find that
unitarity gives rise to the statistical correlations between the width and the spacing of the collision matrix.
It is shown that the distribution of the poles of the unitary collision matrix using Feshbach’s unified
theory of nuclear reactions is the same as the one obtained using R-matrix theory, provided we make
a particular choice of the arbitrary boundary condition in the latter theory. A remark is made about
the use of the random complex orthogonal matrix in the study of the parameters of the statistical collision

matrix.

I. INTRODUCTION

Recently it was shown! that, for purely elastic
scattering, the unitary pole resonance form of the low-
energy collision matrix U can always be written as

N

where N is the number of compound nucleus reso-
nances which may be interfering with each other.
The first term containing ¢ gives rise to potential
scattering and Z, = ¢, — }iI', are the complex poles
of U. The amplitudes G, are complex and are given by
the expression

N

Gu=QmZHTI (2, —ZNZ, - 2)". @

vEU

In the study of the cross-section fluctuations® and
intermediate structure,® a knowledge of the statistical
properties of the parameters of U is needed. For the
case of isolated resonances, when the average width
is much smaller than the average spacing, the param-
eters of U become the same as the parameters of the
real R-matrix theory,* which have been very well
studied in the past.> The purpose of the present paper
is to derive a joint-distribution function of the com-
plex poles Z,, starting from the known distribution
of the parameters of the real R-matrix theory. Since
Eq. (2) gives the complex amplitudes G, in terms of
Z,, all the statistical properties of G, for any value of
the ratio of the average width to the average spacing,

* Present address: Department of Physics, University of Toronto,
Toronto, Ontario, Canada.

I N. Ullah and C. S. Warke, Phys. Rev. 170, 857 (1968); see also
C. Mahaux and H. A. Weidenmiiller, N. P. A91, 241 (1967).

2 T. Ericson, Ann. Phys. (N.Y.) 23, 390 (1963).

3 H. Feshbach, A. K. Kerman, and R. H. Lemmer, Ann. Phys.
(N.Y.) 41, 230 (1967).

4 A. M. Lane and R. G. Thomas, Rev. Mod. Phys. 30, 257 (1958).

5 C. E. Porter, Statistical Theories of Spectra: Fluctuations
(Academic Press Inc., New York, 1965).

therefore, will also be known once the joint distribu-
tion of Z, is given. We give this distribution in Sec. II.
In Sec. III we shall discuss the distribution of the
parameters of U using Feshbach’s unified theory of
nuclear reactions.®” A few remarks will be made
about the complex boundary-value problem® and the
use of the random complex orthogonal matrix® in
the statistical study of the complex amplitudes of the
statistical collision matrix defined by Moldauer.®

II. DISTRIBUTION OF THE POLES OF THE
UNITARY COLLISION MATRIX

The resonances of the real R-matrix theory* are
obtained by solving the eigenvalue equation

H®, = EQ,, 3)

where H is the compound nucleus Hamiltonian, and
®, and E, are its eigenfunctions and eigenvalues,
respectively. The eigenvalue equation (3) is solved in
the internal region by specifying a certain real bound-
ary condition at the surface which divides the whole of
configuration space into an external and an internal
region. Apart from a constant, the overlap integral of
the wavefunction @, with the smooth-channel wave-
function defines the reduced width amplitude y,,
where ¢ denotes a particular channel. In this paper we
shall restrict ourselves to the problem of a singie
channel and so the subscript ¢ will be omitted.

Let us assume that the Hamiltonian H is invariant
under rotations and under time reversal, so that the
joint distribution of the amplitudes y, is given by!?

P({y,}) = f( gaﬂ) @

8 H. Feshbach, Ann. Phys. (N.Y.) 5, 357 (1958); 19, 287 (1962).
7 H. Feshbach, Ann. Phys. (N.Y.) 43, 410 (1967).

8 P. A. Moldauer, Phys. Rev. 135, B642 (1964).

9 Nazakat Ullah, Phys. Rev. 154, 893 (1967).

10 Nazakat Ullah, J. Math. Phys. 8, 1095 (1967).
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The joint-distribution function of the eigenvalues®

E,, apart from the factor TJ¥., |E, — E,|, will be a
function of the quantities of the type Z‘J:l Enl<n<
N. For the derivation in this section we restrict our-
selves to the distribution of H 5 which is a function
of Tr H®. The joint distribution of the eigenvalues E,
can now be written as

N v

PED = ¢ SE)ITE-EL O

We shall see later that the general case in which the

function g contains other >V E” can also be worked
out without much difficulty.

From expressions (4) and (5) we see that the
correlation between y, and E, is strictly zero. There-
fore any correlation between the parameterse, and I',
of U wiil be due to unitarity only.

According to R-matrix theory* the function R is
given by

2

R=R+3 Vo _ ©)

u=1 E E
where R° gives rise to background scattering. Using
the connection between the collision function U and
R, we find that the relation between the complex
poles Z, and the quantities E,, y, can be expressed as

N N N .
ZZ" =§Eu —_ ngly”,

N N N
22, = 368137 S E)
u<vy u<v H=1 AF M
: (7
N E
12, = 1 £~ 13711 )
u=1 u=1 aFp
where 7 = L%1 — ROL%~. The quantity L = L — B,

where the real and imaginary parts of L define the
shift and the penetration factors, respectively, and B
is a real number which specifies the boundary
condition.

The joint distribution of the real and imaginary
parts of Z,, which are denoted by Z}, Z, will be
obtained using expressions (4), (5), (7), and the usual
method of the transformation® of the volume ele-
ment from the space of the variables y,, E, to the
new variables Z}, Z,. For convenience we introduce

' N. Rosenzweig, Brandeis University Summer Institute Lectures
in Theoretical Physics, 1962 Lectures, Vol. 3, K. W. Ford, Ed.
(W. A. Benjamin, Inc., New York, 1963), p. 91.

12T, W. Anderson, An Introduction to Multivariate Sratistical
Analysis (John Wiley & Sons, Inc., New York, 1956), p. 11.
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the quantities x,, which are defined by
= (2Im p)ty,.

Instead of expression (4), we now write the distribu-
tion of the quantities x,, as

P({x,}) = f(Z x3)- (3a)
The first two relations in (7) enable us to write
N N
f( leﬁ) = f( —2 glz;;), (8b)

N
0Z) +2(1 + P 3 ZLZ:),
n<y
)

where w = (Re %)/(Im 7). In the general case when
the function g contains other X3 | E”, we can again
express them in terms of the quantities Z, using the
relations (7).

Next, let us consider the transformation of the
volume element. We first introduce a new set of
variables defined by the relations

g(gEi) = g(é(lﬁ -

=1

N N N
uy=3E,, uy=EE, , uy=11E,,
u=l1 B<Vv p=1
N
UI=ZX5, U2=2x5<zEa), s
p=1 aFp
oy _zx (HE) (10)
aFp

The volume element in the space of the variables
u,, v, is related to the volume element in the space
of the variables E,, x, in the following way:

N
H du, dv, = d d2
where d,, d,, d; are N X N determinants and 0
denotes an N x N determinant which has all elements
0. Because of the particular form of the 2N X 2N
determinant in expression (11), it can be written as a
product of the determinants d,, d,. Therefore,

HdE dx,,

=1

(11)

N N
I'[lduu dv, = d, dzl_IldEu dx,. (12)
= =

The N x N determinant d, can be written as

1
2 E,

uEN

ZE

p#E2

1
2 E,

n¥*l

d

HEu nEu HvEu

p¥l nE2
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It can be easily shown that the determinant d; reduces
to the following simple form:

N
dy = TL(E, — EJ).

u<v

(13)

The determinant d, is the same as determinant d,
except that it is multiplied by an extra factor
2Y(ITY, x,). The constant factors, like the factor
2~ will be absorbed in the normalization constant and,
since the absolute value of the Jacobian enters in the
transformation of the volume element, we shall write
the determinants as their absolute values. Expressions
(12) and (13) then give us

N N

TI du,, dv, = (H [x,‘[)(nw,, - Eﬁ). (14)

u=1 p=1 n<v

The relations (10) which define the quantities v,

can be looked upon as N simultaneous linear equa-
tions for the N unknowns x2. Using the well-known
methods for the solution of the linear equations,
after a few simplifying steps we obtain the following
relation, using expression (14):

N N
TLIE. — E,l TT dE, dx, = [H D;*] 11 du, do,,
u=1 u=1 u=1

pu<vy
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where D, is the N x N determinant
v, 0 0 --- 0 1
v, 0 0 1 E,
vz 0 0 -+ E O
Du=| . . . .} e
vya L} E, -+ 0
vy E, 0 -+ 0 O

Before we make the final transformation to the set
of variables Z, ZL , we replace the set of variables u,
by the new set of variables y,, which are defined by
the relations
(17a)

Yo = U, = hov,.

As can easily be checked, the Jacobian of the trans-
formation from the set of variables (u, v) to the new
set (¥, v) is unity.

The variables y,, v, are nothing but the real and
mmaginary parts of the complex quantities on the
left-hand side of the relations (7). The transformation
of the volume element from the set of the variables

(15)  Yu» v, to the set of variables Zj,, Z| is given by
N
11 dy, dv,
u=1
1 1 1 0 e 0
27 27 2 Z; -2Z, ~27Z,
u#l n¥E2 uEN u#l u#N
Re[IZ,  Rel[Z, Re[]Z, ~Im]IZ, —~Im [ Z.
u#l p¥E2 u#EN n#El uEN N ]
- . A o _, — |Hdziaz,.
-2>7Z 2317 -2> 7 2327 —-2> Z;
ug 1 # u§2 “ u;\l # ugl # MZN #
—2ImT[z, —2Im[]Z, —2Im[[Z, —2Re[]Z, —2Re[] Z,
n¥l nt2 u#N n*l nEN
(17b)

The Jacobian of the transformation is a 2N x 2N
determinant. By subtracting out the first column
from the second, third,---, Nth column and the
(N + Dth column from the (N <+ 2)th,---,2Nth
column, we find that the first row contains zero in all

columns except the first one. We next multiply the
second column by (Z] — Z}), - - -, the Nth column
by (ZI — Z}), the (N + 1)th column by (Zi — Zi),
-+ -, the 2Nth column by (Z! — Z}) and subtract the
(N + Dth column from the second column, - - -, the
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Nth column from the 2Nth column. This gives us a
factor v
112 - Z)® + (Zi - Z))]

p=2

and a (2N — 2) X (2N — 2) determinant, which is
similar in form to the original 2N x 2N determinant.
Continuing this process, we find that

N
I1dy, dv,
uet R N
- ( Tz — 227 + @, — 23)2]) 1T dz; dzi,.
u<v u=1
(18)

The last step in the derivation is to express the
products of the determinants D, in terms of the

1 =y (—=D)Vyy

0 1 (=D yya

0 0 (=D ®yy_e
R=1o 0 Ve

vl - 02 0

0 Uy (“I)N_]UA

0 0 - Ug

Manipulating the columns of the above determinant,
we can show that

N N
R = (1:[1 Z;)(H[(Z;; - Z + (ZL + 25)2]). (21)

u<v
Using expressions (5), (7), (8a), (8b), (9), (15), (18),
and (21), we finally get an expression for the distribu-
tion of the complex poles. It is given by

N ‘
PH{Z., Z,}) 1_[1 dZ,dZ,
Pt

N
_ K‘lf<—2 S z;)
=1
AV ‘ . .’\' . .
X g(z(Z‘f —0ZY 4+ 21 + 0?3 ZLZ:)
=1 <y
N i o . !
x TTUZ; — Z0)? +(Z,, — Z,)1]

<v

x [(ﬂ z;)(ﬁ[(z; —Z) (2L + zim)]_%

®

u<v

N
x Tl dz; dz;, (22)

=1

®

where K is the normalization constant.
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quantities Z, . This product can be put in a form which
is called the resultant of two polynomials.’® We write
the two polynomials /(x) and k(x) as

h(x) _ DlxN_l _ vzx‘n—z + .- + (_1);\'—101\7’
k(x) — XN _ ylxN—l + ysz—z 4+ 4+ (_I)N,VN~
19)
Then, N

I1 D, = Rlh(x), k(x)],
u=1
where R is the resultant of /4(x), k(x). The resultant R
is a polynomial'® in the coefficients of A(x), k(x).
According to Sylvester’s method,* R can be written
asa (2N — 1) x (2N — 1) determinant:

(20)

0 - 0
(=D T 0
(—l)Nflyi\’—l T 0
Vs (—l)x)’N
0 0
0
3 S (=) y

ITII. CONCLUDING REMARKS

Expression (22) gives the joint probability distribu-
tion of the parameters of the collision function U.
We see from this expression that the parameters
Z,=¢, Z,=—3}I', are statistically correlated.
Since the statistical correlation of the parameters of
the real R-matrix was zero, this correlation is a
consequence of unitarity for all values of the ratio of
average width to the average spacing.

We remark here that even though we have not used
a specific form for the functions f and g, they can be
taken to be exponential®:1®1! for many kinds of the
random Hamiltonian matrix ensembles of large
dimension.

The derivation of the joint-distribution function of
the complex poles of U, given in Sec. II, was based on
the real R-matrix theory of nuclear reactions. We
can now ask whether this distribution will change

18 C, C. MacDuffee, Theory of Equations (John Wiley & Sons, Inc.,
New York, 1954), p. 111.

14'W. S. Burnside and A. W. Panton, The Theory of Equations
(Dover Publications, Inc., New York, 1960), Vol. 2, p. 75.
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if we start from some other theory, e.g., Feshbach’s
unified theory.®” It should be noted that the form
of the unitary collision matrix given by (1) is inde-
pendent of any formal reaction theory and is a con-
sequence of unitarity. When one studies the statistical
properties of the quantities Z,, then a particular
reaction theory has to be used to connect Z, with the
eigenvalue and eigenvector components of the com-
pound nucleus Hamiltonian; and if these relations
turn out to be different for different reaction theories,
then the joint-distribution function of the quantities
Z, will also be different.
Recently, Feshbach? has expressed his scattering
matrix T in the form
_— pot __1_ 2i0 Fa E_ Pa .
Tn=Ta" 45 ¢ ZE—ea(l +2ZE—sa) ’
23

where

. (24)
%a» €, are the eigenfunctions and the eigenvalues of a
Hamiltonian Hgp. [See Ref. 7 for the definition of
Hpp and other quantities in expressions (23) and (24).]
Expression (23), which has the advantage that no
arbitrary boundaries have to be used, is the same as
the R-matrix expression if we choose the arbitrary
boundary condition such that w = 0. The usual
statistical assumptions® should now be made on the
Hamiltonian Hgp. The randomness of the Hamil-
tonian Hypp will imply that its eigenfunctions y, and
eigenvalues ¢, are also random. Assuming that the
Hamiltonian Hpyp is invariant under rotations and

Paz =2n KXz’ HQsz(‘
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under time reversal, then a possible distribution of
the eigenvalues €, will be of the form (5) and the
distribution of the eigenvector components y, will
be given by a random orthogonal matrix.!° It has been
shown by Feshbach’ that the width T', defined by
expression (24) can be written as the square of a real
amplitude. It is easy to see, then, that the joint dis-
tribution of the poles Z,, using Feshbach’s theory,’
will also be given by expression (22) with w = 0.
Therefore, the distribution of the poles Z, using
Feshbach’s theory will be the same as the one obtained
using R-matrix theory, provided we choose the
arbitrary boundary condition in the later theory such
that the parameter w vanishes.

We now pass a remark about the use of the random
complex orthogonal matrix® in the study of the
parameters of the statistical collision matrix.® The
joint distribution of the elements of a random com-
plex orthogonal matrix is given by® the invariant
volume element in the space of random complex
orthogonal matrices multiplied by a statistical weight
function that ensures the convergence of the probability
integral. This weight function can now be constructed.
A detailed account of this will be given later. The
statistical properties of the parameters of the collision
matrix which depend only on the invariant volume
can always be worked out® without a knowledge of
the weight function.

In these calculations care has to be taken that the
relations obtained between the resonance parameters
are consistent with unitarity, since the approximate
forms of the collision matrix® may not be unitary.
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The Bethe-Salpeter equation for the bound state of the pion-nucleon system has been studied in the
ladder approximation; the propagation time of the exchanged nucleon is neglected. By using the two-
component formalism, the spinor equation is first reduced to a pair of simultaneous integral equations
in momentum space. Following Fock, we transform these equafions into ones in a four-dimensional
hyperspace and the solutions are obtained in terms of series of O(4) harmonics. As a simple illustration
of our method, we have also considered the Bethe-Salpeter equation for the scalar-meson system. We
find that the pion-nucleon Bethe-Salpeter equation shows an accidental degeneracy in the discrete-energy
spectra similar to that in the solutions of the Dirac equation for the hydrogen atom, provided the
coupling constant does not exceed a certain critical limit. The scalar problem exhibits at small binding
energies a Schrodinger-type degeneracy. Convergence criteria for the pion-nucleon Bethe-Salpeter
eigensolutions as series in O(4) harmonics have been discussed; it is found that no solution exists when
the coupling constant exceeds a certain critical value. In our approximation scheme, there are no

NOVEMBER 1969

abnormal solutions as are encountered in the fully covariant treatment of the equation.

1. INTRODUCTION

There has been a great deal of interest in the study
of methods of solving the Bethe-Salpeter equation!
for the relativistic two-body problem, particularly as
a means of investigating the origin of dynamical
symmetries. The Bethe-Salpeter equation is a fully
covariant equation describing the interaction of a
pair of elementary particles. Attempts to solve this
equation in a fully covariant manner® led to many
difficulties. The bound-state solutions of the homo-
geneous Bethe-Salpeter equation describing the
interaction of a pair of nucleons was originally
investigated in an approximation scheme in which (i)
the interaction kernel was given in the ladder approxi-
mation, (ii) the mass of the exchanged meson was
taken to be zero, and (iii) solutions were sought for
the unphysical case where the total c.m. energy of the
two-nucleon system was assumed to vanish. Goldstein®
found a solution for this special case; however, the
solution led to a continuous spectrum rather than a
discrete one. The major difficulty is largely due to the
existence of the extra degree of freedom of the relative-
time variable which has no analog in nonrelativistic
quantum mechanics, as a consequence of which the
boundary conditions to be imposed on the solutions

1 M. Gell-Mann and F. E. Low, Phys. Rev. 84, 350 (1951); E. E.
Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951).

2 J. S. Goldstein, Phys. Rev. 91, 1516 (1953); H. S. Green, Phys.
Rev. 97, 540 (1955); G.-C. Wick, Phys. Rev. 96, 1124 (1954); R. E.
Cutkosky, Phys. Rev. 96, 1135 (1954); F. L. Scarf, Phys. Rev.
100, 912 (1954); H. S. Green and S. N. Biswas, Progr. Theoret.
Phys. (Kyoto), 18, 121 (1954); S. N. Biswas and H. S. Green,
Nucl. Phys. 2, 177 (1956); H. S. Green, Nuovo Cimento 5, 866
(1957); S. N. Biswas, Nuovo Cimento 7, 577 (1958); S. Okubo and
A. Feldman, Phys. Rev. 117, 279, 292 (1960); L. H. D. Reeves,

Ph.D. thesis, Adelaide University, 1962.
3 See Ref. 2.

of the Bethe-Salpeter equation cannot be clearly
indicated.* Wick® and Cutkosky® shed some light on
these questions by considering a modification of the
Bethe-Salpeter equation for the bound states of two
spinless particles interacting via a massless scalar
meson. An exact solution with arbitrary binding
energy is possible for this case if one adopts a physi-
cally reasonable condition on the wavefunction which
is also necessary for the existence of its Fourier
transform.

In addition to the studies of the Bethe-Salpeter
equation for bound-state solutions, there are a number
of discussions on the analytic properties of the scat-
tering amplitude within the formalism of the inhomo-
geneous Bethe-Salpeter equation.” It is known that
scattering at high energies is determined not only by
the fundamental Regge poles, but by a number of
daughter poles taken in conjunction with the funda-
mental ones. It is generally believed that the existence
of these daughter poles is intimately related to the
higher symmetry inherent in the structure of the
Bethe-Salpeter equation at zero energy.® The existence

4 This has also been noted by K. Rothe, Phys. Rev. 170, 1550
(1968). Some radially symmetric solutions were obtained (see
Biswas and Green, Ref. 2) by requiring that the solution of the
Bethe—Salpeter equation together with its spatio-temporal deriva-
tives should be finite and continuous, and particularly on the light
cone.

5 See Ref. 2.

¢ See Ref. 2.

? D. Z. Freedman and J. M. Wang, Phys. Rev. 153, 1596 (1967);
D. Z. Freedman, C. E. Jones, and J. M. Wang, Phys. Rev. 155,
1645 (1967); A. R. Swift (report of work prior to publication);
B. B. Deo and R. E. Cutkosky, Phys. Rev. 174, 1859 (1968);
B. W. Lee and R. F. Sowyer, Phys. Rev. 127, 2266 (1962); H. S.
Green and S. N. Biswas, Phys. Rev. 171, 1511 (1968); N. P. Chang
and R. P. Saxena (report of work prior to publication).

8 G. Domokos and P. Suranyi, Nucl. Phys. 54, 529 (1964).
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of a hidden or dynamical symmetry was first noted
by Cutkosky,” who transformed the equation by
applying a stereographic projection to a five-dimen-
sional pseudosphere. This has later been noted by
several other authors.1

Although the covariant treatment of the Bethe-
Salpeter equation has thus been the subject of several
investigations, some hope has also been fostered that
some aspects of the equation might be understood using
a noncovariant approximation. For instance, Klein!
examined the two-nucleon system rather exhaustively
in the ladder approximation; however, he neglected
the time of propagation of the exchanged virtual
meson. This second approximation is commonly
known as the “instantaneous interaction approxi-
mation.” Recently, a similar type of approximation!?
has frequently been used in the study of the two-body
scattering problem in' the ladder approximation. We
would like to consider in this paper the bound state
solutions of pion-nucleon Bethe-Salpeter equation in
the ladder approximation, neglecting the time of
propagation, of the exchanged nucleon. A relativistic
treatment of this problem has been considered by
Rothe, 3 using the variational techniques of Schwartz,4
which have led to renewed interest in the Bethe-
Salpeter equation. We would like to solve the pion-
nucleon Bethe-Salpeter equation in the momentum
space by adopting the method of Fock,'® who
originally solved the nonrelativistic Schrodinger
integral equation in momentum space and showed
that the accidental degeneracy of the hydrogen atom
is related to the invariance of Schrddinger equation
under transformations of the O(4) group. Levy'®
later showed how the O(4) harmonics in momentum
space could also be used to solve the Dirac equation.

In Sec. 2 we have considered the pion-nucleon
bound-state equation. We show that, by adopting a
two-component decomposition for the four-component
spinor pion-nucleon wavefunction, this bound-state

® See Ref. 2.

1 R. Delbourgo, A, Salam, and J. Strathdee, ICTP Preprint
No. IC/66/60; A. O. Barut, P. Budini, and C. Fronsdal, ICTP
preprint No. IC/65/34; S. N. Biswas, J. Math. Phys. 8, 1109 (1967);
E. Kyriakopoulos, Phys. Rev. 174, 1846 (1968). For a general
discussion on dynamical symmetry, see N. Mukunda, L. O’Rai-
feartaigh, and E. C. G. Sudarshan, Phys. Rev. Letters 15, 1041
(1965).

11 A. Klein, Phys. Rev. 90, 1101 (1953); 91, 740 (1953); 92, 1017
(1953); 94, 1052 (1954). See also J. S. Goldstein (Ref. 2).

12 This type of approximation is also known in literature; see,
for example, A. A. Logunov and A. N. Tavkhelidze, Nuovo
Cimento 39, 380 (1963). See also R. Blankenbecler and R. Sugar,
Phys. Rev. 142, 1031 (1960).

13 K. Rothe, Phys. Rev. 170, 1548 (1968).

14 C. Schwartz, Phys. Rev. 137, B717 (1965); C. Schwartz and
C. Zemach, Phys. Rev. 141, 1454 (1966).

5V, Fock, Z. Physik 98, 145 (1935).

16 M. Levy, Proc. Roy. Soc. (London) 204A, 145 (1950).
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equation can be reduced to a pair of simultaneous
integral equations in two momentum-space radial
functions. To solve these equations, we go over to the
four-dimensional hyperspace by means of a suitable
substitution. To illustrate this method, we discuss the
solution of the simpler scalar problem with various
suitable approximations. An important consequence
of the use of this method in this particular case is that
the eigenvalue problem is completely determinate and
an accidental degeneracy of the Schrodinger-hydrogen
type emerges for small binding energies. This has been
done in Sec. 3. The general method of the determina-
tion of the eigenvalue problem for arbitrary energies
for the scalar problem has also been discussed here.
In Sec. 4 we extend this method to solve the coupled
equations for the pion-nucleon system [Egs. (16a)
and (16b)]. We find that the equations can be solved
by a pair of infinite sums of O(4) harmonics with
arbitrary coefficients. The problem of determination
of the energy eigenvalue reduces to that of finding
the necessary compatibility condition for the existence
of solutions for the coefficients of O(4) harmonics
which satisfy a pair of difference equations. We again
find that, for binding energies, the energy-eigenvalues
are discrete and this leads to the so-called accidental
degeneracy of the Dirac-hydrogen type. We must
remark that in solving these equations we retain only
the most singular parts of the respective potentials
which appear in the scalar-meson and the pion-
nucleon problems. The modifications in the solution
due to the inclusion of the rest of the potential are
also discussed. We may remark that the various
features of the results we obtain may be closely
related to the nature of the various approximations
we have used. The existence of bound-state solutions
in various channels has been pointed out; in particular
we obtain, as expected, the (4, ) and (£, 2) states.
Eigensolutions for these states correspond to normal
solutions so long as coupling strength has a certain
upper bound. Solutions disappear when the coupling
exceeds this critical value. These features have been
discussed in the last section.

2. THE PION-NUCLEON BETHE-SALPETER
EQUATION AND REDUCTION INTO
TWO COMPONENTS
The relativistic two-body wavefunction for the pion
and nucleon'® in a state § is defined by

¥i(xy, xp) = O T{¥(x)¢'(x0)} 1), 6y

where ¢*(x) and W(x) are Heisenberg fields of the
pion and nucleon, respectively, |0} is the physical
vacuum, and T is the time-ordering operator.
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If we restrict ourselves to the ladder approximation,
we arrive at the following homogeneous integral
equation for the two-body bound-state wavefunction
in a specific isospin channel I:

Yi(x,, x;) = G f dix] d'xiGy(xy — X))

X Gy(xy — xp)I(x; — xp)F(xz, x1), (2)
where

G" = y(Dg*(4)",

nih=—1, I=4

=2, I =%

Gi(x) and G,(x) are the usual nucleon and pion

Green’s functions. I(x) is the interaction function

and, if we restrict ourselves to the nucleon-exchange
diagram only, it is given by

1 d4ke-—ikx
109 =25 [
i)y - k+ M

where M is the mass of the exchanged nucleon.

Henceforth we shall suppress the isospin labels and
the subscripts 1 and 2 will always refer to the nucleon
and the pion, respectively.

Now, by writing the wavefunction as the product
of two terms describing the center-of-mass motions
and the relative motion of the two particles, Eq. (2)
reduces in momentum space to

if(my + Y’E[2 + y - k)

()

y(k) = D)
1
aik ————— k), 4
xf y-(k+k’)+M1P() “4)
where
f= GI/7T2
and

D(k) = [(k" + E[2)* — (K* + m})]
x [(k* = E[2)" — (k* + m})].
We would like to study this Eq. (4) for the bound-
state solutions. As mentioned in the Introduction,
the boundary conditions to be imposed to extract the
discrete solutions are not exactly known. We there-
fore make the following noncovariant approximation,
namely, that the propagation time for the exchanged
nucleon is neglected. Thus we write

I(x) = V(x)d(1). 5)

With this approximation, Eq. (4) reduces to the

following:

(my 4+ Y°E[2 + y - k) "p(k)D(k)
d*k’

=iffM—v-(k+k') (©)

(k).
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The compatibility requirement for Eq. (6) suggests that
we put

(my + Y°E[2 + y - ) Tp(k)D(k) = S(k).  (7)
Then S(k) satisfies

{M — y-(k + k)}D(K)

The k" integration in (8) can be performed at once
to give a three-dimensional integral equation. We
define a new function ¢ through

¢(k) = N(K)S(k), 9

where

N) = [(m; — ¥ - K)J(k) + y’EL(K)}/ T(k),
with

I = (& + mh ™+ &2+ md

LK) = (" + m)

T(k) = E* — {(& + m)t + (& + mDH)2
The integral equation for ¢ can be easily obtained
from Eq. (8). To avoid inessential complications in
our study, we assume that the pion-nucleon mass
difference is not very large. Under this approximation
we have the following equation for ¢(k):

R)[(m, — ¥°E,) + ¥ - klg(k)
z dk

= Ty e M (0
where
A27* = fm,
Em = E/[l + (mZ/ml)]a
and

R(k) = T(RJK)/{(K* + m)J*(k) — E*L(k)}.  (11)

It is evident from (10) that ¢(k) is a four-component
object; we then write ¢ as

"
w0 = (720)
ALY
where ¢t and ¢~ play roles analogous to the large and
small components of the usual Dirac spinor.

To separate the angular variables, we write the
spinor ¢ as proportional to three-dimensional
spherical harmonics. We note that for the pion-
nucleon system, we have the total angular momentum
j=1+4+4% and j=17— %, and further, because of
parity conservation, a transition from j =174} to
! — % is forbidden. In particular, there are two types
of solutions corresponding, respectively, to j =/ + %
and j =/ — }. For j = [ + }, we have the following

(12)
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angular dependence [see Appendix, Sec. Al |:

I+ m 4+ 1\

trm IV ym,
( 2+ 1 ) 09

(k) = g(k) ) ,

| — 2 m
-(555) e

| — N
(—27"%—) Y20, @)
);k= k 1 )
rao=ff o o
20+ 3 e A ¢

where g(k) and f(k) are two radial, momentum-
space functions to be determined through Eq. (10).
Substituting Eq. (12) in Eq. (10), we obtain the
following set of equations:

(13)

R(K)[(m; — E,)¢"(K) + o - kg (k)]
A k'

= - |—— M -+ K Ko (K
(k+k,)2+M2{ ¢g"(k') + o K¢ (k)
+ o - kg (K)},

R(K)[(m, + E,)¢ (k) — o - kg' (k)]

a2k’

f (k + k')* + M?

(14a)

{(Mg~(K') — o - K ¢*(k')

— o-kg'(k')}. (l4b)

If we note that

(l—m+1)‘%

2+ 3

(l+m+2)5
2043

YZil(G, ‘P)
YO, @)

I+ m+ 1\
SIm Yy,
( 20+ 1 ) (0, @)
= . (15)

| — 3
—(27?”;) Y, @)

[which follows easily through the use of the recursion
relations, Egs. (A3)], we finally obtain the following
set of simultaneous integral equations for g and f:

X(pHIglp) + Tpf(p]

— vor 2l £8(p)0(%)
27" 2pp’

[0 2= 10040 = p00s®h 160,
2pp
(16a)

* I+
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X(p)ITf(p) — pglp)]

Can e [_ . f P (p)Q1r()
27 2 pp’
2T
— pQ(£
e 0N g(o’ )}
(16b)
where
E,, = mye,
k| =k = my(1 — &)¥p,
=+ o/l — O, 1= Mjm,.
E=(p+ p% + ud)2pp, a7

1

R — P, X(ph) = —
nmy

= = A=)

We now wish to solve this pair of equations for the
energy eigenvalue problem wusing O(4) spherical
harmonics. To illustrate the method of solution which
we will adopt, we consider the Bethe-Salpeter equa-
tion for the scalar-meson system under approximations
similar to those we have just used for the pion-
nucleon system.

He = [ [R(k)]kzzm?(l—veg)p?a

3. SOLUTION OF SCALAR BETHE-SALPETER
EQUATION USING 0O(4) HARMONICS
The Bethe-Salpeter equation for the interaction of
a pair of scalar mesons via scalar-meson exchange?’
is given by

[(ps + EF + 9° + mIl(py — E* + p* + m*](p)
= fgftp(q){(p —qf — Y (18)

In this section we illustrate our general method for
solving Eqs. (17) and (18) using hyperspherical
harmonics. First we reduce Eq. (18) to the following
three-dimensional equation, neglecting the propaga-
tion time of the exchanged scalar meson. Equation
(18), thus approximated reads

(1 + k3 tsk) d*k
N , (19
B = f Crik—pra O
where
g(p) = {(* — PP — 4*p21S(p), ¢ = (1 — &L,

We have also put € = E/m, with m = 1.
Separation of the angular variables in Eq. (19)
gives
2 ’
X(p)(1 + pu(p) = 2= - 4 f dp LHLI0E)
2mc 2pp’
(20)

17 For the notatiohs and conventions used in this section, see
S. N. Biswas (Ref. 10).
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where u(p) is a suitably defined wavefunction and we
have put

Kl = cp, ue=[p¥f(1 — AP,
X(p%) = {1+ (1 — Hptt.

In order to solve the above integral equation, we
shall expand the kernel in a series in powers of pu, .
The requirement for the convergence of this series
will certainly impose some restrictions as to the
domain of validity of the solution subsequently
obtained. However, it is easily seen that for sufficiently
small # Eq. (20) reduces to

X(p(1 + p*u(p)
A3 D, 2p Pl
= — —1 .
3 2 (=Due) f(p2 "

e p=0

(cos 6"Yu(p') d*p’
p'? — 2pp’ cos 671
+ tuau(p), (21)

where Q' is the entire three-dimensional space spanned
by p’ and €, is a small sphere centered at (0, 0, p)
and 1t = (22/c)(1 — {m).

First we solve Eq. (20), assuming that the exchanged
scalar meson is of vanishing mass (thereby retaining
only the most singular part of the potential) and that
the binding energy is small. We can facilitate the
solution by transforming the variables according to
a general transformation initiated by Fock.

We go over into Fock’s hyperspace through the
substitutions

p = tan (p[2), p’ = tan (y'[2). (22)
Equation (20) is thus transformed to
(@ + B cos p)u(y)
, Py(cos 6"u(y) )

v
- iQ
it ”’)f 4 sin® (0]2)

where
v(y) = ultan (y[2)]/cos? (y/2),
a=3—e)2, B=(+4 )2, ¥2n*= ildnc,

and © is the angle between two unit vectors (in
the four-dimensional space) of polar angles (y, 0, 0)
and (v, 0, ¢'); dQ' is now the four-dimensional
solid angle.

We now attempt a solution of (26) in the following
form:

o(y) = 2 arP 2l (c0s ¥). (24)
=0
The functions P (cosy) are related to the
Gegenbauer polynomials C; and to the associated
Legendre polynomials in a simple manner [see Eqs.
(A4), (AS)].

D. BASU AND S. N. BISWAS

We now substitute (24) in (23) and note that
fdQ’ P®(cos y')P,(cos ')

= AP (cos y), (24)

4 sin® (0/2)
with
L [l PR = 3}
(3 J= 2(1 — x)
27t
Tt (249

The particular result given in Eq. (24') is a conse-
quence of the general theorem due to Hecke on
integral equations satisfied by hyperspherical har-
monics. For completeness we have stated the theorem
in the Appendix [see Eq. (A6)].

Using (24) and noting the recurrence relation

cos pP%)(cos p)

=("+2)("—1+l) (2)

n(n + l + 1) P(z)
2n + 1) L

2n + 12
(25)

we obtain (24) as a solution of (23), the coefficients
a, being determined by

ak(a————” )
n+ k41

bkt Dn+k=0(, v
T 4 2n + k)? (’3 n+k)
ta m+k+Dn+k+142)
wrt 2An + k +2)°
v —
X(ﬂ_n+k+2)_0 (26)

This is a second-order difference equation; the
criteria for the existence of solutions to this difference
equation determine the energy-eigenvalue problem.
The condition is given in terms of the following
infinite-continued fraction*®:

27

where M,, L,, and K, are the coefficients occurring in
Eq. (26),

My, + La, + Kia_y = 0. (28)

Without elaborating on this condition any further,
we simply note that if we neglect terms of order
|k|2/m in « and B, then the equation is satisfied by

v(p) = PE)(cos y),

18], M. Milne-Thomson, The Calculus of Finite Differences
(Macmillan and Co., Ltd., London, 1951), Chap. 17.
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with
Mame = (n + D[27° (29)
whence

= (1 — &) = n2fd(n + 1) (30)

Thus in this particular case we arrive at the con-
clusion that the scalar Bethe-Salpeter equation admits
an O(4) symmetry, and energy values are given by (30),
leading to the accidental degeneracy of the Schrodinger-
hydrogen-atom type.

We now consider the case when the mass of the
exchanged scalar meson is nonvanishing. Thus we
consider Eq. (21) and treat it in the zeroth-order
approximation. To generate the higher terms, we have
first to solve the following equation:

(o 4 B cos p)v(y)

" , Py(cos 6" u(y")
=2 q tcos ¥)uy )
2mt (1 + cos w)L'—sod 4 sin* (©/2)

+ Hu (1 + cos p)u(y), (31)

where S and S, are portions of the hypersphere into
which Q' and Q, are transformed. Substituting (24)
in (31) and noting that

P P o
L 4o 208 VIPUCOSO) _ ) p@cog 4y (32a)

4 sin* (0/2)
with
_ et PR~ X
TR 2(1 — x)

= [2a%(n + 1)] ~ dmul + cos ) + O(4d),
8o = 2p2 cos* (y[2), (32b)

2109

we get the following recurrence relation to determine
the coefficients a,:

Lityie + Myt + Nyay + Qs 1 + Ry 2 = 0,

where L,, M,, N, O, and R, are given in the
Appendix [see Appendix, Sec. AS5].

This leads to a fourth-order difference equation;
the general solution now becomes extremely involved.
We refrain from studying this equation any further
here. In the next section we discuss and obtain the
solutions of pion—nucleon problem, using the methods
developed in this section.

4. SOLUTION OF THE PION-NUCLEON
BETHE-SALPETER EQUATION

We shall now study the solution of pion-nucleon
Bethe-Salpeter equations (16) by employing the
techniques discussed in the previous section. As
before, we perform a power-series expansion of the
function in the form

X(¢®) = A(e) + Ble)p?,

where 4 and B are functions of energy and go over into
Fock’s hyperspace by means of the substitutions (22).
if we further define

G(y) = gltan (y/2)]/cos® (y/2),
F(y) = f[tan (y/2))/cos® (y/2), (33)
the transformed equations, on retaining only the

most singular part of the potential as before, take the
following form:

(0 + wcos p + B cos® P(1 + cos w)G(y) + I sin pF(y))

(1 + cos ¢')G(y')Py(cos )

;l [ (1 + cos w)fdcz'

4 sin® (9/2)

y A+ in 'P,(cos 0') — sin y(1 P, ' '
(0 + acos g + fcos® P)[T(1 + cos Y)F(y) — sin v G(y))
Ay (1 + cos Y )F(y')Py(cos 6')
= —=| —u(l dQ as
2772[ wl - cos "’)f 4 sin (0]2)
+ 2r a9 {(1 4 cos p)sin ¢'P,,,(cos ') — sin (1 + cos )P (cos 0)}G(y') 245
T+ 4 sin® (0/2) ] (34b)
where
2y = n(I)(~)'g"/8m, (35a)
F-DE+D A+ - A+
& 26° é&
_1+4 a+ )1 = &) 149+
p ) 262 4* ’ (355)

a=0+f, 0=m/m,.



2110

This pair of equations is very similar to the corre-
sponding equations one obtains in treating, in
momentum space, the Dirac electron in an external
potential. We are thus tempted to assume the following
types of solutions, given by infinite series of O(4)
spherical harmonics:

Hw=%wmu&$%mm

Jo=!

G<w>==:gbksn1‘ wPy%Hcos ). (36)
o=

Since each of P,;’s in Egs. (36) should be non-
vanishing, we then have v =n + / + 1, wheren > 0
[see equation connecting C;’s and P}’s in the Appen-
dix, (A5)].

6A£1,+(v+k—l+l)[ AL (p+k—-=14+2)

+ P S A
2 + k + 2) . ﬁ2@+k+$
@+k+1+DPNn
2(y 4 k)
A;Cb)

k—1

Fh A

(1’+k+l+1)A(b)
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To obtain the solution of our Bethe-Salpeter
equation for the case j = / — }, we replace / by / — 1
everywhere in the above expressions. Hence the rhs
of (35a) should read #(/)(—)"'g?/8x. Combining
these two cases, we then see that the effective coupling
strength is

b= 4y = (=) dn(Dg8n 37
for a channel specified by (j, 1), and further that
v=n+j+% n>0. (38)

We now substitute the expressions for F and G
given by Eqgs. (34a) and (34b). With proper use of
Hecke’s theorem [see Eq. (24)] and the recursion rela-
tions [see Eqs. (A3)], we obtain the following pair of
recurrence relations between the coefficients g, and b,

+k+1+2
A4 p AR LD o

v+ k+.1)
+k—-0D 0 ﬂ(v+k+l) Am]
2v + k + 1) v+ k=1 7"

= I'.
’P%+k+n

2(» + k)
Ay

k1

(V+k"l+1)Aw)}
v+ k+22 7

2a,

r
(W+U@+k+nm+m2

GA;(¢2)+(V+k+I+2)[ AR +ﬁ(v+k+l+l)

20 + k) 20+ k—1)
(v + k — 1)[ A®
2w+ k+2)

A(a)

M+ B A +
GHk+1+2),w

rs1 \}(w@

u+m@+k+m v+ k + 2%

(2 ﬂ(V +k—1- 1) (z)J

k- k
Qb+ k+ 1)

v+ k+143), 5@+k—

1+1)A(2)]
v+ k+3)

k+2

2r + k + 1)

=k[ &v+k+n

20y + k)?

(v+k—'l) A(a)}
2p + k + 27

by

r {@+k+l+nw+k+l+m

+aﬁ+n@+k+n

2o+ k=D +k+1+1)

(v + k)?
+k—=DBv+k—-14+1

-+

G+E+k+2)

by + mﬂﬂ.@%)

(v + k + 2)?

The various symbols A, and A, which occur above are functions of the coefficients 4, and b,. These are given

by the following relations:

AP = b, + m (Capiy + (v + k=1 + Dbyl — m P,y — G+ k + 1+ Db,
AR = Py 22 s + 6o k= 1 D]

W Capy — (v + k + [+ Dby,], (40
M%Pﬁ&%%%ﬁ%~%%ﬁﬁ%ﬁ'
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5. EIGENVALUE PROBLEM AND ACCIDENTAL
DEGENERACY
Equations (39a) and (39b) can now be used to
determine all the coefficients a; and b,. The energy-
eigenvalue problem is determinate and is obtained as
a compatibility determinant for the existence of
solutions for a,, by, etc. We first note that

(@) _ A _ A
AP =8 = Ay

In order to find the energy-eigenvalue problem, we
put Kk = —3 and —2 in Egs. (39) and obtain the
following set of linear homogeneous equations for
the determination of a,, by, and

=AY =0, k=-2,-3,-"

_F _
20 + 2) [Pay + (v — I + 1)b,]:

Pay + (v — Db, =0,
BT + L,u/2v)ay + (v — Dey = 0,
(B — 2;u/2v)by + ¢ = 0.

Co =
(41)

The compatibility requirement for the nontrivial
solutions of a4, etc., is

AuT2 — 48T — Ju = 0. (42)

One can continue this process and obtain higher-
order compatibility determinants for the homogeneous
equations which determine the coefficients a,, b,, etc.
It can be shown that these compatibility determinants
are zero if condition (42) is satisfied (see Appendix,
Sec. 6). The eigenvalue equation (42) leads to a compli-
cated higher-order algebraic equation in I' (even in
the equal mass case), which we can study.adopting
numerical methods. However, if we make the simpli-
fying assumption that the interacting particles have
equal masses (6 = 1) and that the binding energy is
small, then (42) reduces to a quadratic equation

Aul? + 81 + A,u =0,

where 4, is given by (37) and » by (38). Note that I
is positive and greater than unity [see Eq. (17)]. Thus
we look for that root of (43) which is positive and
greater than unity. This is possible only when 4; < 0.
In such a situation, when the potential is attractive,
the above equation possesses an admissible solution,

= [+ (* — )7, (44)
where A = }u |4;|, u = 1, and we have the restriction
1 < 1, so that

r>1,

We shall see later that this condition is also necessary
for the convergence of the series for G(y) and F(y)

(43)

y=1,2,-" (45)
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[Egs. (36)]. As a result, for the following states
characterized by

It
Il
wfc,: Do

rojee Do

2

roja nojor

’...’ I
I

J
j L,
we have discrete energy spectra. The dlscrete energies
of the spectrum are given by

)

e=[ =T +j+ P @6
withn=0,1,2,--
I =g¥32m, I=1%,
A=g¥lom, I=3 (46b)

We thus obtain the (}, }), (3, 3) states as possible
bound states and also conclude that the (3, §) state is
more strongly bound than (3, ). There may be many
more excited bound states corresponding to various
values of n. There is no experimental knowledge of
these states at present.

Equation (46) further shows that the S; and P;
nucleon states are degenerate. This is akin to the
accidental degeneracy one encounters in the Dirac-
hydrogen atom problem. The existence of the degen-
erate S, and P, nucleon states should be compared
with the results for the bound-state solutions of the
fully covariant Bethe—Salpeter equation by Rothe.!
Rothe finds that not only are the S; (0, -channel) and
Py (1_-channel) states nondegenerate, but also that
the solutions to the Bethe-Salpeter equation in Py
state are abnormal in that they correspond to discrete
negative-energy spectra. Further, these abnormal
solutions are related to the normal S; Bethe-Salpeter
solutions corresponding to a positive-energy discrete
spectrum through the existence of a generalized
MacDowell symmetry. This states that if @(4, ¢) is a
solution of Bethe-Salpeter equation with £ = ¢ for
the channel /,, then @(4, —e) is also a solution of the
Bethe—Salpeter equation for (/ £ 1) channel with the
same coupling strength. This is a consequence of
the full Lorentz symmetry of the covariant Bethe-
Salpeter equation. The existence of an abnormal solu-
tion may be attributed to the presence of the relative
time in the fully covariant equation, which may be
regarded as a new degree of freedom in the equation. In
the present case, as we work in the instantaneous
interaction approximation, this eliminates the extra
degree of freedom from our modified Bethe-Salpeter
equation. As a consequence, no abnormal solutions
are present in our problem. The MacDowell!® sym-
metry in the covariant case removes the accidental
degeneracy we note in our solutions.

19 §. W. MacDowell, Phys. Rev. 116, 774 (1959).
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Finally we must check the convergence of our
series for G(y) and F(y), given by (36). Equations (41)
and (44) show v

lao/by| ~ O(4),

where 1 < 1 and is given by (46b). This indicates a
possible identification of F and G as the small and
large components. The ratio (a,/b,| are all found to be
of the order of A. In addition we find, for example,
from (39) and (41),

[b1/bo| ~ 0(22)-

This shows that the two series can be convergent
only when 7 < 1, a condition which is also necessary
for the existence of the physically admissible solutions
of (43). Hence we have convergent eigensolutions
only if the coupling is weak and an accidental degen-
eracy in the energy spectra of the pion-nucleon
Bethe-Salpeter equation emerges as in the case of
Dirac-hydrogen atom problem. Our result is similar
to that obtained by Tiktopoulos,® who showed that
the Bethe-Salpeter equation for the positronium
bound state exhibits a Schrédinger-type degeneracy
in the weak coupling limit.

It is interesting to note that if the pion-nucleon
coupling 4, given by (46b), is large, Eq. (46) leads to
unphysical values of the total energy and the corre-
sponding wavefunctions G(y) and F(y) both diverge.
This is probably a feature of the noncovariant
approximation used in our treatment whose full
implications are not easily discernible. The non-
existence of Bethe-Salpeter solutions for large coupling
could be due to the retention of only the ladder
diagrams in the interaction kernel; this may not be a
valid approximation for large coupling strength. This
type of nonanalytic behavior of the wavefunction
with coupling constant has also been noted by Datta®
in different connections.
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APPENDIX

1. Derivation of Equation (13)

To obtain the angular-momentum eigensolutions,
we first set the small components equal to zero. Now

20 G. Tiktopoulos, J. Math. Phys. 6, 573 (1965).

21 K. Datta, Ph.D. thesis, Brandeis University, 1966. See, how-
ever, W. Kohn and C. Majumdar, Phys. Rev. 138, A1617 (1965)
for a nonrelativistic model in which the analytic dependence of
the bound-state energy on the coupling constant is smooth in the
transition to the continuum.
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from standard theory of angular momentum we can
write the two-component wavefunction g, for
j=1l+1as
Yiu = ;é %C(l’ %’ I+ %; u— mg, ms)Y;‘—maXm,’
(A1)

where y denotes the spin-§ wavefunction. Setting
= m + §, we have

’l+m+1§ 1 I —m\t 0
i —_ Y‘m Ym+1 R
Yamid ( 2+ 1 ) 1(0)+(21+1) ; (1)

Hence we attempt to write g% 4 for j =1+ } as

T+ m+ 1\
l—————— ym
& )( e ) ;
(p;ﬂH—%: l ,} ) (A2)
g2<k)(————" ’”) yp
2041

where g, and g, are to be found from Bethe-Salpeter
equations. Since conservation of parity in pion-
nucleon system demands that there cannot be any
transition from / = j + } to / = j — }, we have that
o-Lis a good quantum number; hence from (A2)

we find easily that
2 2

g1 = 82>
leading to

g = g

In our case we choose the normalization such that
g1 = —g: =g Thus we get Eq. (13) for ¢*. The
equation for ¢~ can also be obtained by an argument
parallel to that of Dirac equation.

2. The Recursion Relations??
XP4 = (2v + )7Y(u + »)PL_,
+ (v — p 4+ DPY,),
(1 — x)PE = (2 + )H{PUH — P}, (AD)
—(1 = PP = (20 + DY (o + @) + u + DP*,
— (v~ @)y — pp + DPL).

3. The P{), Functions

The P, functions used are simply related to the
Gegenbauer potynomials C,:

1 .
PPcos p) = o sin’ wClti(cos p).  (A4)

22 W. Magnus and F. Oberhettinger, Formulas and Theorems for
the Special functions of Mathematical Physics (Chelsea Publishing
Company, New York, 1949).
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The corresponding relation with the associated

Legendre polynomials is given by Ni=o - n+ k +1 + pe(tf4 — 2o[m)
ml Ch = TG+ DDA ~ DR (0. [ T A D
(A5)
(n+k+l+2)(n+k—l+1)}
4. Hecke’s Th 23
ecke’s Theorem’ M+ k+ D)+ k+2)
Let F(x) be a function of the real variable x which (n+k+Dn+k=1
is continuous for —1 < x <1, and Y, (&) be any O = 2n + k)P
general surface harmonic of degree n. Then, for any y
unit vector 7, X {ﬂ - m + 2u(t/4 — 211/77)},

(n+k+Dn+k—Dn+k—-1-1)
= Rk =
| Fenn@dae =ntm.  @o T e

where X pt[4 — 2v[m).
2nHery (g — D! 6. The Compatibility Condition
F(q + 1)(n +q—1) Higher-order determinants, for example, for the
) determination of a,, by, a;, by, ¢; = [B/2(v + 3] x

L [Tay, + (v — I + 2)b,], can be reduced to the
xf F)CY3(x)(1 — x)¥ D dx. (A7) following:
-1

A
. . (ﬂF+ ”‘) 8 o
5. The Various Coefficients L, - - - R, 2y
I
Ltk l+Yntk+1+Dm+k+ D (ﬁ_aﬂ_) 8 AT
4n + k +3)%n + k +2) 2y
X 14 — 2v]m), B(».T ( J_ful) _( p___’la;'“_)
0(1” ) ﬂ v+1 ﬂ 1}+1
M _n+k+DHin+k+1+2)
L =

= (B/TYA;uI* — 4T — Au)
X (Apl™® + 28(v + DT + A,),

x [/3 — T} 2udt/4 — 21,/77)} where we have used (41) and (39).
n + k +2 The vanishing of the determinant is thus guaranteed

3 Higher Transcendental Functions, A. Erdélyi, Ed. (McGraw- by the condition (42)' This process can be continued
Hill Book Co., Inc., 1953), Vol. 2. to any order.

2(n + k + 2)°
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An alternative formulation of a general theory of observables is presented, which contains as special
cases the systems proposed by Segal and Mackey. The basic properties are developed, and the exact

relations to the aforementioned systems are deduced.

INTRODUCTION

Since the work of von Neumann in the thirties on the
foundations of classical quantum mechanics, which
lay dormant for the next 20 years,'~® the subject has
been approached in two distinct abstract ways,
initiated by Segal* and Mackey.® These axiomatic
systems have several common features, but diverge at
certain points in an essential way—for example, in
Segal’s system, one obtains a profusion of states,
while in Mackey’s their existence has to be postulated.

The purpose of this work is to propose and study a
system of axioms designed to cover both approaches
and still be rich enough to produce a reasonable
theory. Further, it is based upon primitive concepts
which, in the writer’s opinion, are closer to the
operational use of the various terms, thus perhaps
achieving a more universal validity. These concepts
are (i) the possibility of forming functions of ob-
servables, which is supposed to interpret the applica-
tion of functions to the measured values of an
observable, and (ii) the description of states through
expectation value functionals, since itis the expectation
value of an observable that one is trying to evaluate
by measurements. We restrict attention to continuous
functions of observables, first, because this seems to be
the minimal class of functions one can work with
effectively and, second, in order to avoid possible
ambiguities in case of uncertainties in measuring. In
the first part, we describe the system obtained and
deduce its basic properties, showing that it contains
as special cases the systems of Mackey and Segal.
The second part is devoted to the development of a
special system in order to obtain the exact connection
to the work of Mackey. The relation to Segal’s system
is also discussed there. A construction of “glueing
together™ a set of vector spaces, required in order to
explore the existence of states, is given in Appendix A.

1], von Neumann, Mathematische Grundlagen der Quanten-
mechanik (Julius Springer-Verlag, Berlin, 1932).

2 J, von Neumann, P. Jordan, and E. Wigner, Ann. Math. 35, 29
O von Neumann and G. Birkhoff, Ann. Math. 37, 823 (193).

4 1. E. Segal, Ann. Math. 48, 930 (1947).

5G. W. Mackey, The Mathematical Foundations of Quantum
Mechanics (W. A. Benjamin, Inc., New York, 1963).

Appendices B and C contain certain special results
needed in the main parts.

I. THE GENERAL SYSTEM
A. The Axioms

We assume the existence of a nonempty set AG of
objects, which we shall call observables, and that the
algebra 5 of continuous functions from the reals to
the reals acts on AG to produce elements of L. We
shall write f(4) for the result of applying feF to
A € M, and we assume the following:

Axiom 1: Let f(4)=g.(B), i=1,2,---, and
suppose that the supports of the set { f;} and those of
the set {g;} form locally finite systems. Then

(if) (4) = (Eg) (B) and (fif(4) = (2:2:)(B).

Axiom 2: Let o denote composition of functions,
Then, for any f, g € 5 and A4 € A, we have

(fog)(4) = fig(4)).

Axiom 3: If f{A) = f(B) for all bounded fe ¥, then
A = B. If 0, 1 denote the constant functions x — 0,
x— 1, x real, then 0(4) = 0(B) and 1(4) = 1(B)
for any A, B e M.

Remarks: The purpose of Axiom 1 is to allow us to
introduce consistently the structure of an algebra on
{f{4) | f€F} (see Sec. B). The reason for including
infinite sums is technical, but as it is desirable to avoid
introducing from the beginning any topology on the
observables or on &, we restricted attention to infinite
summations under which F is closed for algebraic
rather than topological reasons. For a sequence f;
whose supports form a locally finite system (i.e., a
class of sets such that each point has a neighborhood
intersecting finitely many of the sets in this class), this
is quite clear.

We first show that the axiom systems of Mackey®
and Segal* satisfy the above axioms.
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Theorem 1: The axiom system of Mackey satisfies
the above axioms.

Proof: Recall that an observable in the Mackey
system is a o-homomorphism A from the Borel sets of
the real line into a given logic £. Thus it is determined
by its values on the interval (—oco,r) where r is
rational. Also recall that f(4) is defined as the o-
homomorphism A4 o f~! (composition). We write for
convenience {f < a} for {x|f(x) < a} Now assume
that Aof;'=Boglfori=1,2,---,n. Since

{élfi < r} =

and A, B are s-homomorphisms, we obtain

)

(A o fi(—wo, u;

U{n {fi <pd| D < vy rationals}
i=1 i=1

; <y My ratlonals}

T T "

(Bog 7= 0, ;)

v

YN ratlonals}

and hence
(glf) (4) = (gl g,-)(B).
Since
Eﬁ = lim 12 i

and similarly for > g, let

i o

g =limg;

1= 00

and use the relation

=U ﬁ n {f; < p, p rational}

p<ra=1li>n

{lim fi< r}
to obtain f(4) = g(B). Analogous arguments for the
product yield Axiom 1. Axiom 2 follows from
(fog)* = (g o (f?). For Axiom3,letj =3 f,,
where j(x) = x and the f; are bounded and continuous
with supports forming a locally finite system, to
obtain j(4) = j(B), and hence A = B [since j(4) = A
in Mackey’s system]. Finally, if ¢ is the function
Xx — ¢, we have

¢c(E) = R,
= Q,

if cekE,
if ¢c¢E,

where R is the real axis. Thus ¢(4) (= 4 o ¢™!) maps
E on the largest (smallest) element in £ if cc E
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(c ¢ E). This is independent of A; hence Axiom 3
holds.

Theorem 2: The axiom system of Segal satisfies the
above axioms.

Proof: This follows from the functional representa-~
tion theorem of Segal. The only abstruse part is
Axiom 1, which involves infinite sums. But as the
spectra of 4, B are compact and the supports of f;,
g: form locally finite sets, the :ries becomes finite
sums

()0 =2

(summing in Segal’s sense), so that the axiom does
hold.

B. The Algebraic Structure on (G

Axiom 1 allows us to introduce an algebraic struc-
ture on each set F(A) = {f(4)|feTF}, A fixed in
A, in the obvious way. We define

SHA) s (glﬁ)(/l)

whenever the supports of the functions f; form a
locally finite system, and we define f1(A)f;,(4) as
(fif2)(A) for any functions f;, f, € F. By Axiom 1
this is consistent, and F(4) becomes an algebra with
zero element © = 0(4) and unity 7 = 1(4).

It is clear from Axiom 1 that the above algebraic
structure is consistent on any intersection, (2, F(4,).

We shall need the following:

Proposition I: Let f,(A)=0,n=1,2,---, with
the supports of the £, forming a locally finite set, and
letf > i [ Then f(A) =

Proof: Take any h € F and consider a partition of
unity, ¥* g, =1, so that h = Y2 h, with h,

hg,. We then have f(4)+ h,(A) = h,(4) since
Sl =0, ie., (f, + k,)(A4) = h,(4). Hence

él( fu 4 h)(A) = (ih")(A) = h(A)
or

(34)c0+ne0 =0 or s =

Proposition 2: For any A € M, we have j(4) = 4,
where j(x) = x.

Proof: Since foj = f, we have that f{j(4)) = f(4)
for all f.
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C. The Spectrum of an Observable

We shall write 0 < /< E to mean that, for all x, we
have 0 < f(x) < Lx(x), where Ly is the character-
istic function (indicator) of the set E.

Definition 1: An open set U is “A-null”” if, for any
J€F suchthat 0 < f< U, we have f(4) = ©.

Proposition 3: Let U, V, U; (iel) be open. If
V < Uand Uis A-null, sois V. Ifeach U, is A-null, so
is their union.

Proof: The first is obvious. Now we can write
U,e; U; as a countable union {J, ., V, of a locally
finite system V,,, such that each V, is contained in
some U; because the real line is separable; then all
V, are A-null. Now take a partition of unity

2=
subordinate to V,,,1.e, 0 < f, = V. If
0<r=Uv,
we have "~
f=3 1t

so that f(4) = © by Proposition 1.

Corollary 3.1: If f{d) = ©, then {x|f{(x) 5 0} is
A-null.

Proof: We may assume that f > 0, since f3(A4) =
f(A4)? = © while f(x) and f{(x)? vanish for the same
valuesof x. Let U, = {x | f(x) > In}.1f0 L g < U,,
we define A(x) as g(x)/f(x)if g(x) # 0 and as Q if g(x)
vanishes; then 4 is continuous and g = Af. Thus
g(4) = f(A)h(4) = © and U, is A-null. But

(x50 %0} = U,

and thus is A-null.

Definition 2: The “spectrum’ o4 of A € M is the
complement of the union of all 4-null open sets.

Thus, o4 is the smallest closed set whose comple-
ment is A-null.

Proposition 4: For any fe 5, A € M, we have that
of(4) € floA).

PLATON C. DELIYANNIS

Proof: Let U be open, U N f(cA) = & ; then
STWU)Nod= . 1f0<gc U, then0<gofc
J71U; hence (g o f)(4) = © because /~1U is an 4-null
set. Thus g( f(4)) = © and therefore U is an f(4)-null
set, so that U N o(f(A4)) = @. Taking for U the
complement of the closure of f(¢A4), we obtain the
result.

Proposition 5: We have A = 9 iff 64 < {0}.

Proof: Since © = 0(A4), we have 60 < TA) = {0}.
Suppose that 64 < {0}. Write

(=, U (0, + ) = lj Vs

where the V, form a locally finite system with com-
pact closures, and take a partition of unity

s

f.=1 on Uy,
n=1

n=1

Then f,(4) = ©, while j =

]

wey Jf» so that
A= j(A) = glj(A)fn(A) - e

Corollary 5.1: If 0 < f< g and g(4) = ©, then
fi)=o.

Proof: If g(4) = ©, then {x | g(x) # 0} is A-null;
but {x lf(x) # 0} < {x l g(x) # 0}, and hence is also
A-null. Thus f|od =0 or f(o4) = {0} and hence
af(4) < {0} or f{4) = ©.

Proposition 6. For any f€ 5 and 4 € M, we have
fled) < af(A).

Proof: Take x € f{oA); then, for any open interval
U containing x, we have U N f(c6A) # @ or (f7'U) N
g4 # . Thus there exists an 7€ F with compact
support such that 0 < A < U and h(A) # 0. Be-
cause there exists some 4 € § with this property, and
by Proposition 1, we may assume 4 to vanish on all
but a single component of f~1U, say W. Now write W
as a union of a locally finite countable covering of
open bounded sets, and let %, be a partition of unity
subordinate to it. Then some #,(4)4(A) is not ©, and
we may take it to be 4. By Theorem 25 of Appendix
C, there exists a ge F such that 0 < g < U and
h < gof Then g(f(4)) # © and therefore U is not
Sf(4)null; hence, U N of(4) # 2 and, as gf(4) is
closed, we have x € af(A).

We restate Propositions 4 and 6 in the following
way.
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Theorem 3: Forany fe F, A € M, we have of(4) =
ficA).

We have also established in the previous arguments
the following:

Theorem 4: For any fe 5, A € M, the observable
f(A) is completely determined by the function f| oA.
The map f(4) — f| 04 is an algebraic isomorphism.

Definition 3: An observable is “bounded’ if its
spectrum is bounded, i.e., compact.

We shall write B3(A) for the set of bounded elements
in §(4), and || 4| for sup |x|.

recA

Proposition 7: If B = f(A), then |B|| = sup|f(x)I.

zecd

Proof: We have

Bl = sup |y| = sup [y| = sup [y

yes 3 veaf(4) yef(e.d)
= sup |y| = sup|f(x)I.
ver(ad) xecd

The next statement needs no proof.

Proposition 8: The set $(A) is a subalgebra of F(A)
complete under the norm B — ||Bj| and closed under
the action of F.

D. The Cone of Positive Elements

Definition 4: An observable is “positive’” if it is the
square of some other observable.

We use C(4) to denote the set of all positive ob-
servables in F(A4).

Proposition 9: The observable f(A4)e C(4) iff
fled >0.

Proof: Let f(A) = B%; then of(4) = o(B?%) = j*(B),
hence of(4) = [0, + o), and thus f(c4) = [0, + ).
Conversely, let | 64 > 0 and consider any & on the
reals extending f'| o4 continuously with nonnegative
values (Tietze’s theorem). Then f | oA = (ht | gA)?
and f(A) = (h}(4))? so that f(4) is a square.

Theorem 5: The set C(4) N B(A) is a proper cone
in $B(4), radial at [I; the resulting ordering is
Archimedean and I is a unit element.

Proof: Clearly, f(4), g(A) € C(4) implies f(4) +
g(A) e C(A4) because of Proposition 9; similarly,

2117

Af(A) € C(4) for 4 > 0. Thus C(4) is indeed a cone.
Now let Band —B bein C(4), B = f(4), —B = g(A),
so that f{A) + g(4) = ©. Then f(x) + g(x) = 0 for
all x € 64 and, as f(x), g(x) are nonnegative on o4,
weobtainf | 64 = g | 04 = 0,i.e., f(4) = g(4) = O,
and C(4) is proper. Now take any f(4) € $B(A4) and let
k be a lower bound of f on oA. Then, for 0 <t <
|l — k|71, we have (1 — ) + tf(x) > 0 on 64 and,
thus, (I — 1)I + 1f(4) € C(A4); i.e., C(A) is radial at
I. To show that the ordering is Archimedean, suppose
that —el < f(A4) < €l for all € > 0; then | fix)| < ¢
on 4 for all € > 0 and therefore f(4) = ©. Finally,
for any f(A4) € B(A4), we have —| f(A)| I < f(4) <
1Al 1, so that I is a unit.

E. States

Definition 5: A “state’ is a map m from & into the
reals such that m | $(4) is linear for any A € A0,
m(A®%) > 0 for any bounded 4, and m(I) = 1.

Write S for the set of all states.

Proposition 10: If A is bounded, then |m(4)} < | 4].

Proof: Let f(x) = ||Al — x and B = f(A4); since
flod >0, we have g(d4) =f(4), where glx) =
max (0, f(x)). As g > 0, the function & = g} is in &
and thus B = h(4)2. Therefore m(B) > 0; hence
m(4) < |A4]l. Replace 4 by —A4 to obtain m(A4) >
—l4l.

Theorem 6: Let m be a state and 5, the set of all
bounded elements of &. Then the map m,:5,— R,
given by m,(f) = m(f(4)), determines uniquely a
regular finitely additive probability measure u , on the
ring of sets generated by the open sets in R such that,
for any bounded f(A4), we have

m(f(A)) = f F(x) dp o).

This measure is supported by oA4.

Proof: For fe F,, we have
Im ()] = Im(f(A)I < N f (DI = sup IFON < Sl

therefore the measure u 4 exists and is uniquely deter-
mined. Also, p (R) = m(1(4)) = m(l) =1 and, for
f 20, we have u,(f) > 0, since

f=g* and m(g(4)® > 0.
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Finally, if the support of fis disjoint from 64, we have
f(4) = © and, hence, m4(f) = 0, so that the support
of w4 isin gA.

Definition 6: The probability measure g is the
“distribution of 4 in the state m.”’

Note: Thus m(A) is the expectation value of 4 in the
state m, the points of oA being the various probable
values of A. It is possible that for an unbounded A4 the
expectation exists in the sense of the integral

J;Ax du 4(x).

The interpretation of u, as a probability distri-
bution is justified because of the following:

Theorem 7: For any set E in the ring generated by the
open sets, we have 4 (E) = p (fE).

Proof: For any bounded g€ §, we set B = f(A)
and obtain m(g(B)) = m((g 0 f)(A)), so that

Jadun=[t@o dus.
But this is equivalent to the above statement.

Observe that the value of u (U) (for open U} is
given by sup {m(f(4))|0 < f < U}.

Remark: If we restrict attention to bounded ob-
servables only, then we see that automatically the
measures associated to the states are countably addi-
tive because the spectra are now compact, and we
obtain from Dini’s theorem the countable additivity
condition: If f; > f; > -+ - and inf £, (x) = O for each
x, then n

lim p,(f,) = 0.

n—ow

To study further the structure of 8, we introduce the
set G of all maps s: & — R such that s | B(A4) is linear
for each A and |s(B)| < k | Bl| for all Be & (k may
depend upon s). Clearly G is a real vector space under
pointwise operations, and

Is(B)!
sl sup 1Bl
defines a norm on it.

Lemma I: The set S is a strongly convex subset of
the unit ball in G.
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Proof: If m; € 8 and a; > 0 with 37 a, = 1, then
m = > a,m; (pointwise operations) is evidently in
S. Further, |m| < 1 by Proposition 10.

The weak topology on G is obtained by introducing
the basis of neighborhoods
N(505 €; A19 A2, e 9A71)
Is(4:) — so(A)l < e,

for the element s,.

i=1,,n

={s

Proposition 11: The space T, equipped with the
weak topology, is locally convex Hausdorfl. The unit
ball is weakly compact, 8 is weakly closed in it and
hence weakly compact.

The proof is standard and we omit it. By the Krein-
Millman theorem we have the structure of 8.

Definition 7: A state is “pure’ if it is an extreme
point of 8.

Thus the states are obtained from the pure ones by
mixing (convex combinations) and approximating
(weak limits).

F. Existence of States

We shall now obtain a necessary and sufficient
condition for the existence of states with desired
properties. First, observe that, for a fixed 4 € M, the
range of the map m — m(4) is contained in the
interval [inf o4, sup 0A4]. Since the map is continuous
in the weak topology on 8 for which § is compact, we
see that the set {m(4) | m € 8} is a closed subinterval
of [inf 64, sup aA] (or perhaps empty).

Consider the following:

Axiom 4a: Forany a € [inf A, sup oA] there exists
a state m such that m(4) = a.

First, we give an alternative formulation:

Axiom 4b: For any open non-A-null set U, there
exists a state m such that u (U) = 1.

To prove the equivalence, we need the following:

Proposition 12: If Axiom 4b is valid, then [[A]| =
sup [m(A)|.
meS

Proof: Since Im(A)| < [|A], we ohly need the reverse
relation. Take xo€ 04, € > 0, and let U = (x, — ¢,
Xy + €); then we have a state m such that u,(U) = 1.
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Now,
m(A4)] = f x dp 4(x)
=} foduA(x) > Ixo — €| > xo] — <.
Thus,

{xo] € € + sup |m(A)|, forany e>0,
mes
which proves the resuit.

Theorem 8: Axioms 4a and 4b are equivalent.

Proof: Assume Axiom 4a and take x, € (64) N U.
There exists an feJ such that 0 < f< U and
[f(xo) = 1. Then 1 = sup f(o4) = sup af(4)and, hence,
there is a state m such that m(f(4)) = 1. But then
u4(U) = 1. Now assume Axiom 4b, and let {a, b] be
the range of m — m(A4). By considering 4 — al, we
may assume a = 0 without loss of generality, so that
m(A4) > 0 for any state m. Now, if 04 contains both
negative and positive points, there exists by Theorem
26 of Appendix C a function fe & such that (i)
—1 < f{x) < 0 and the value —1 is taken on o4, and
(i) f(x) + 1 — d > cx for some ¢,d > 0. Then, if
B = f(A4), we obtain — Bpositiveand B + (} — d)] —
c4 also positive; since m(4) > 0, we obtain

~14+d<m®B) L0

for all states m. By Proposition 12, we have | Bl < 1,
while by Proposition 7, we have || Bl = 1. Thus we
conclude that o4 is nonnegative. But then, again by
Proposition 12, we see that sup 64 = b and, thus, the
two intervals [a, 5] and [inf 04, sup ¢4} coincide.
Axiom 4a follows.

Observe that Axiom 4a is equivalent to the appar-
ently weaker statement: If 4 £ ©, then there exists
a state m such that m(4) = sup o4.

We shall now translate Axiom 4 into a form which
involves only the algebraic structure of the sets
$B(A) where 4 € M. We observe that as vector spaces
they form a coherent system (see Appendix A), and
we can apply the ideas developed there. The cones
C(4) N B(A) are all radial at I, and it is obvious that, if
f(A4) ¢ C(4), then there is a point x, € ¢4 at which
flxe) < 0; thus the map g(4) — g(x,) defines a
positive functional on $B(4) for which f{A) has a
negative value. Thus the hypotheses of Theorem 24
in Appendix A are satisfied.

Theorem 9: Axiom 4 is equivalent to the statement:
Every element in the sum > , (C(4) N B(A)) that
is in B(B) is already in C(B).
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Proof: If this statement is valid, then the positive
functionals on $(B) extend. Now take any a € [inf ¢B,
sup oB] and define a functional ¢ on the subspace
N’ = multiples of I by ¢(cl) = c; this is positive. We
can extend ¢ to the subspace spanned by I and B,
provided we assign to B a value between

sup {p(A) | 4 € N, 4 < B}
and
inf {p(A) | A €N, B < A}

[the ordering being the one induced by the cone C(B)],
according to Appendix B. But, since 4 € N> means
A = cl, the relations 4 < B and B< 4 mean ¢ <
inf 0B and sup 6B < c; thus, ¢ can be extended to a
positive functional on the subspace of $(B) spanned
by I and B, provided we assign to B a value between
inf 0B and sup ¢B. Call this extension y. Now v is
positive on a subspace of $B(B) which contains the
point I, at which the cone C(B) is radial; hence
applying Theorem 3.3 of Ref. 6, we obtain an exten-
sion of v to B(B). But then our hypothesis allows an
extension to 3 , B(4), i.e., we obtain a state m such
that m(B) = a. Now for the converse: Assume
Axiom 4 and let B be an element in 3 , (C(4) N B(A));
this implies that m(B) > O for any state m. Now, we
show that ¢B > 0. If not, we find, as in the proof of
Theorem §, an element B, € $(B) such that —1 +
d < m(B;) <0 for any state m, while —1 is in the
spectrum of B, . This contradicts Axiom 4, and, hence,
the spectrum of B is nonnegative.

In the following, we assume Axiom 4.

Theorem 10: 1f x, € oA, there exists a pure state m
at which 4 is measured exactly (i.e., its probability
distribution has zero variance) such that m(4) = x,.

Proof: The map f(A4) — f(x,) is positive on B(A);
hence, it extends to a state. Let 8§, be the set of all
its extensions. Clearly, §,is a weakly closed subset of
8 and, thus, is weakly compact; therefore it-has an
extreme point m. We shall show that m is an extreme
point of 8. Let m = a,m, + a,m,, with a, > 0 and
a, + a, = 1; the restrictions of my, m, to HB(A)
determine measures which must coincide with u,
bgcause this is evidently concentrated on {x,}. There-
fore m,, m, € §, and, as m is extreme in §,, we have
m = my = m,. Thus m is a pure state, and evidently
A is measured exactly in it, since u 4 is concentrated on

{xo}-

®J. L. Kelley and 1. Namioka, Linear Topological Spaces (D.
Van Nostrand, Inc., New York, 1963).
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1I. SPECIAL SYSTEMS
A. Algebraic Structure

We now assume that F consists of all finite Borel-
measurable functions from the reals to the reals and
that their action on A satisfies Axioms 2, 3, plus the
stronger version of Axiom 1 stated below. Observe
that Theorem 1 is still valid.

Axiom 1': Let fi(A) =g/(B), i=1,2, -+, and
- assume that

f=3fn g=3Snel
Then /(4) = g(B), and (fLf(4) = (8:22)(B).

We aim at establishing an analogous theory and
showing its exact relations to the Mackey system of
axioms. Not all of the previous arguments are valid,
because in several we made essential use of the
continuity of the functions in &. Whenever we omit a
proof, it is because only trivial (if any) changes are
necessary to adapt the previous argument.

First, observe that, as in Sec. I.B, we obtain on each
F(4) a homomorphism of the algebraic structure
of F.

Proposition 13: If f(Ay= O and f= D, f.€F,
then f(4) = ©.

Proposition 14: For any A, j(4) = A.

Proposition 15: If 0 < f < g and g(4) = O, then
fli4)=0o.

Proof: We can now directly define k(x) as f(x)/g(x)
for g(x) # 0 and A(x) = 0 for g(x) = 0, to obtain
he§ and f = gh; then f(4) = g(A)h(4) = &.

The following result is very useful:

Theorem 11: An open set is A-null (according to
Definition 1) iff X (4) = 0.

Proof: If L;(A)=0 and 0 < f < U, then by
Proposition 15 we obtain f(4) = © and thus U is
A-null. Conversely, let U be A-null and consider a
partition of unity >°, f, = 1 on U (with all f, zero
outside U). Then f,(4) = © and, as Xy =32, f,,
we have by Proposition 13 that X, (4) = 0.

Thus we can extend Definition 1 to the following:

Definition 8: A Borel set Eis ““A-null”” if L g(4) = 0.
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By using Propositions 13 and 15, we have the follow-
ing by standard arguments:

Theorem 12: The set of all A-null sets is a o-ideal in
the o-ring of all Borel sets.

We can now prove the following:

Theorem 13: The observable f(4) = o iff {x | f(x) #
0} is A-null.

Proof: As before, we may assume f > 0. Suppose
f(4) = © and let

E,={x|(n+ )7 <fx)<n}
so that Xy < (n + 1)f; but then E, is A-null and, as

x| /) # 0 = U E,,

n=1

we see that it is 4-null. Conversely, if
E={x|f(x) # 0}

is A-null, we obtain from the relation f = fX that
fi) = o.
B. Spectrum, Norm, and States

Retaining the definition of the spectrum, we then
have the following:

Proposition 16: For any AeM, o4 < {0} iff
A= 0.

Proof: By Theorem 13, we have 4 = 9 iff R — {0}
is A-null; but this is open, and its being A-null means
o4 < {0}.

We can now establish the analog of Theorem 4:

Theorem 14: For any f, g € ¥ and 4 € M, we have
Sf(4) = g(A)iff f| 64 = g | 64 except on some A-null
set.

Proof: We need only establish that f{4) = © iff
S| o4 = 0 except on some A-null set. If f| o4 =0
except on the A-null set E, then &L, , = fX, ;X and,
since &L, 4(A4) = I, we obtain f(4) = f(A)Lz(4) = ©.
Conversely, if f(4) = ©, we have by Theorem 13
that f vanishes except on some 4-nuil set and hence
S| o4 likewise.

It is unfortunate that Theorem 3 is not valid in the
present context, because proposition 6 may fail if
[is not continuous. However we have:
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Theorem 15: For any f€ & and 4 € M, we have
of(A) < f(oA). If fis continuous, then equality holds.

Proof (after Gudder™): Consider any x € af(4) and
any open U containing x; then Ly(f(4)) # © and
hence &L -y(y;) # © or f71(U) # @. This means that
x is in the closure of the range of f, which implies that
af(A4) is contained in the closure of the range of f.
Now take x € f(0A4) and let

gy = fy),

. =X,

for yeod,
for y¢od,

so that g € & and the range of g is contained in f(cA).
Since f| 04 = g| oA, we have J{d) = g(4); thus the
spectrum of f(4) is contained in the closure of the
range of g, hence in the closure of flaA).

We also retain the definition of a bounded observ-
able and of the norm. We shall now establish a
formula for || 4| analogous to that of Proposition 7.
The essential supremum of a function is understood
relative to the o-ideal of all A-null sets; we shall write
it as A-essup.

Lemma 2: If |f(x)] < M for all xe€ oA, then
/DI < M.

Proof: We have

(A = sup |y] < sup |y] < sup |y| =
yeaf(A4) uef(aA) lvlsM

Thus we obtain:

Lemma 3: If lim f,

n—~—>0

= funiformly on ¢4, then

lim || f,(4)

n* o0

— ()] =0

Theorem 16: Let f€F and A € M. Then, f(4) is
bounded iff the function f is essentially bounded on
oA ; in such a case,

If (DI = A-essup Lf (.

Proof: First, take f of the form 3V a, %5 , with E,,
pairwise disjoint, and let B = f(A). Then 0B <
{0,a,,a,, -, ay} by Theorem 15. It is clear that
a, ¢ oBiff E, is A-null, because, for any small enough
neighborhood U of a,, we have f~'U = E,. Thus

sup |y| = max {|a,| | E, not A-null} = A-essup | f(x)|.

vea 3 xec d

7 8. P. Gudder, Trans. Am. Math. Soc. 119, 428 (1965).
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Now we proceed to general f, and by the usual
argument we assume f > 0. Take a sequence of f,
having the previous form such that 0 < £, (x) < f(x),
which converges uniformly and increasingly to f(x).
Then A4-essup £, converges to A-essup f, and | f,.(A)/
converges by the lemma to || f{4)|. Therefore we have
the desired equality.

The results of Sec. I.D are carried over to the present
context with trivial changes in the arguments.

We shall also retain the definition of a state.
Theorem 6 holds, but now the ring of sets on which the
probability measures are defined consists of all Borel
sets. In fact, we have directly that u (E) = m(X4(A)).

Axiom 4b takes the following form:

Axiom 4c: If E is not A-null, then there exists a
state m such that u (E) = 1.

We shall omit the minor modifications necessary to
adapt Sec. I.F.

C. Simple Observables

We shall now reduce the study of A to the study
of a proper subset.

Definition 9. An observable is “‘simple”” if it equals
its square.

We shall write € for the set of all simple observables,
and £(4) for the set £ N F(4).

Proposition 17 (Mackey): The three relations 4 =
A%, 64 < {0,1}, and 4 = XL y(B), for some Be K
and some Borel set E, are equivalent.

Proof: From A = A® we obtain (j — j2)(A) =

or that the spectrum of (j — j%)(4) is contained in {0}.
Since j — j? is continuous, we see that it maps ¢4
into {0}. But only the set {0, 1} has this property;
hence 04 < {0, 1}. Conversely, 64 < {0, 1} implies
j*| o4 =j| oA or j3(4) = j(A), i.e., A2 = A. Now let
A = f(B), so that f* — f is zero on ¢B except on
some B-null set F; then

ST g (x) = [f)Tp ()

(where F’ is the complement of F);hence f(x)L 5 (x) =
L g(x) for some Borel set E. Since Lp(4) = O, we
have f(B) = X x(B). The converse is obvious.

Note: Observe that X (B) = Ly(B) iff the sets E,
F differ by a B-null set.
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The connection between an observable 4 and simple
observables is contained in the following:

Theorem 17: If Ly (A) = L4 (B) for all Borel sets
E, then A = B.

Proof: Clearly, we have f(A) = f(B) for fof theform

n
S aXy,,
f=1

where the E, are pairwise disjoint. Now for a
bounded f, we take a series of functions f, of the above
form converging to f. Then

1) =3 £.(4) = 3 1.(8) = S(B)

and hence 4 = B.

Thus A4 is characterized by the map E— Lz(4)
from the Borel sets into £. Observe that each £(A4)
carries a natural structure of Boolean c¢-algebra in-
duced by the partial order: B < C iff B = JXz(A4)
and C = Xp(d4) imply that £ £ F except on some
A-null set (or equivalently, in view of Axiom 4c,
m(B) < m(C) for all states m).

Theorem 18: The map E— Jy(A) is a o-homo-
morphism into £(4). Conversely, if E — Q(E) is such
a o-homomorphism, there exists a unique B e F(4)
for which Q(E) = X g(B).

Proof: The only thing to show for the first part is
that XLz(A) is the supremum of the elements Ly (A)
in £(A4) under the assumptions that

and the E, are pairwise-disjoint modulo the A-null
sets. But this is clear because the unions are countable,
and the A-null sets form a o-ideal. For the converse,
we write Q(E) = Xg(A4), where S(E) is unique
modulo for some A-null set. All equalities of sets in
the following will be understood modulo some A-null
set. We shall show that EF— S(F) is a o¢-homo-
morphism (modulo A-null sets). Let £ N F = &.
Then, Q(E)+ Q(F)= Q(E U F) and, hence, by
squaring, we have

Q(E) + Q(F) + 2Q(E)Q(F) = Q(E U F)

or Q(E)Q(F) = ©. Hence, Lg(g)nsum(4) = © and,
thus, S(E) N S(F) = . Furthermore, we obtain

Lsm(4) + Lgm(A) = Lgim u sim(A4),

PLATON C. DELIYANNIS

since S(E) NS(F)= @, and hence Lgp m(4) =
L usin(A), o S(E U F) = S(E) U S(F). We now
show that in general S(E N F) = S(E) N S(F). We
have S(E N F) U S(E N F') = S(E) and, as

SENFYNSEF) =g,
we get S(E N F) N S(F) = S(E) N S(F); but
S(ENF)< SF)

and thus S(E N F) = S(E) N S(F). Finally, we show
complete additivity: Assume

ENE, =g, for i#],

and compute. We have

L) = 0 UE,) = sup 0(E,)

= sup Lgg,(4) = Ly gz, (4);

hence
S(QIE,,) = El S(E,).

Now, there exists a Borel function f such that S(£) =
f7Y(E), which will be uniquely determined modulo
some A-null set. Then

Q(E) = Lgg)(4) = L15)(4) = Tg(f(A)).

Since the ambiguity on f'is restricted to an A-null set,
the element f{4) is uniquely determined.

We recapitulate below the results we have obtained
this far.

A set £ is given as the union of Boolean o¢-algebras
£, (i varying in some index set); each £, is isomorphic
to a quotient of the algebra of Borel sets on the real
line by some ¢-ideal; the minimum and maximum
elements of the various £; are common to all, and the
system of the L, is “‘coherent’ in the sense that
£; NL; is a Boolean o-subalgebra of £, and £;, while
on it the inherited structures coincide. An observable
is obtained as a o-homomorphism of the Borel sets
into some member of the system.

Apropos, we remark that, starting with such a
coherent system of Boolean c-algebras, we can define
observables as g-homomorphisms of the Borel sets
into some member of the system and the action of the
Borel function f on the observable 4 to be A of~!
(composition); then Axioms 1, 2, and 3 hold, the
proof being the same as in Theorem 1. The original
set can then be recaptured as an isomorph of the
set of simple observables.

With regard to states, we have the following
characterization:
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Theorem 19: Each state is uniquely determined by
its restriction to the set of simple observables. If
P 1s the restriction of m to L and if u,, is the additive
measure E — p,(L,(A)), then m(f(4)) = | fdu,,. A
map m:L —> R is the restriction of a state iff m | £(A4)
is an additive probability measure.

Proof: Only the second part needs a proof, as the
first is contained in Theorem 6. Given the map m,
observe that, if U is an open set disjoint from ¢4, then
we have that g, (U) = m(Ly(4)) = 0, so that, fora
bounded f(A), the integral { f(x)du,(x) exists and
equals

f F) dug ().
ad

To extend the functional thus defined to any bounded
observable, we need the consistency relation: B = f(A)
implies

[ xan = [ f00duc),
where
WE) = m(Tg(B)) and u(F) = m(Lp(4));
but
W(E) = m(L15(4)) = u(fTE)

and, as », u are concentrated on ¢B and g4, respec-
tively, we have the desired equality of integrals. Thus
m extends consistently to 3. Linearity on each B(4)

as well as the remaining properties of states follows
immediately from the properties of m.

This allows us to define, in the framework of simple
observables, a state as a map from £ to R such that its
restriction to each £; is an additive probability meas-
ure. Axiom 4c then takes the form:

Axiom 4d: If A € U L, is not O, there exists a state
m such that m(4) = 1.

D. Relation to the System of Mackey

It is now clear that Mackey’s system is obtained by
imposing further restrictions on the coherent system
(£,).

The first is that the given partial ordering on the
{,determines a partial ordering on the union = U¢,,,
i.e., that the relation “A, Bef, for some i and
A < B’ is a partial ordering on £. It is further assumed
that every sequence of disjoint elements of L has a
supremum (or, equivalently, that it is contained in
some £;). Finally, the definition of a state is more
restrictive, as it is assumed to be countably additive;
this, in terms of expectation-value functionals on the
bounded observables, means a condition of the
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following form: If 4, > A, > -+ > A4, > --- and
the infimum is © [all A4; in some $B(A4)}, then
lim m(A4,) = 0 as n— co. It may be interesting to
find a condition on M equivalent to the above
assumption on the partial order of €.

E. Segal’s System

It is not hard to verify that Segal’s system is ob-
tained from Axioms 1, 2, and 3 of Sec. I.A by further
imposing:

(i) The coherent system (F(A)) is already a vector
space, i.e., the construction of Y F(4) does not
produce anything outside of U F(4).

(ii) All observables are bounded.

It is not necessary to assume Axiom 4 because it
follows from (i) that the condition of Theorem 9 is
satisfied.’

APPENDIX A: SUMS OF VECTOR SPACES
1. The Sum of Vector Spaces

Let (V)),; be a family of vector spaces over some
scalar field F; we assume the zero element to be
common to all (write it 0), while we write addition
as +.

Definition 10: The family (V)),., is “‘coherent’ if,
for any choice of i),iy, -+ ,i,&€l, the set Vl-1 N
Vi, O NV, is a vector subspace of each V; , and
on it the various induced vector-space structures
coincide.

Now consider the set V of allmaps a: I — {J,; V5,
such that (i) a(i) € V; and (ii) all but finitely many
values are zero, and equip it with pointwise operations
(i.e., consider the restricted outer direct sum of the
spaces V). Let a ~ b mean: There exist distinct j, k € 1
such that, for i  J, k,

a(i) = b(i)

and, forsome x e V; N V,,

a(j) + x = b(}),
ak) — x = b(k).

Obviously this relation is symmetric and reflexive.
Its minimal extension to an equivalence relation
a A~ b is defined as follows: There exists a sequence
dy, Oy, ,a, €V such that a=gy~a, ~-" -~
a, = b; call such a sequence a ““chain of length n
joining a to 6.”

® S. Sherman, Proc. Am. Math. Soc. 2, 31 (1951).
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Lemma 4. The relation a ~ b means: a(i) + c(i) =
b(i), where c(i) = 0 except for finitely many i = i,,
i2, trty, i", While

c(iy) (41
c(iy) Co
. - M ’

where the matrix M has » rows and m columns
{(m < n < 2m), its entries are 1, 0, or —1, and it
contains in each column exactly one 1 and one —1.

Proof: We use induction on the length of a chain
joining a to b. For length 1, this is true with M = ().
Suppose that it is true for all chains of lengths < p,
and let a5, a,, -, a,,,; join a to b. We then have
a(i) + c(i) = a (i) with c(i,) = 3™ M, ,c;, M of the
required form, and c(i) =0 for i# iy, i, -
Since a, ~ b, we have, for i % r, s,

a,(i) = b(i)

and, forsome xe ¥V, NV,

!l'ﬂ'

a,(r) + x = b(r),
a,(r) — x = b(s).

Then a(i) + c(i) = b(i), for i # r, s and for a(r) +
c(r) + x = b(r), a(s) + ¢(s) — x = b(s), so that the
matrix expressing the new c(i)’s has one more column
of the desired form and at most two more rows,
depending upon whether or not r or s (or both) is
-equal to one of the indices i;, &, - - - , i, . In any case,
the element x is added at the end of the column of the
¢;. Thus the new matrix M has the required form.

Remarks: (i) It is clear that, in case M contains a
2 x k submatrix of nonzero elements (so that the
remaining elements in the corresponding columns are
zero), we can replace it by a 2 x 1 submatrix of the
form (1) and change the right-hand column accord-
ingly. (ii) Since the total number of nonzero elements
in M is exactly 2m and the number of rows is between
m and 2m, it follows that, if no row contains exactly
one nonzero element, then all contain exactly two
such nonzero elements. (iii) The relation a ~ b in-
volves only the spaces V;, for which at least one a(j) or
b(j) is not zero because the elements c; are in inter-
sections of these spaces.

Lemma 5: Let a; ~ b; and a, &~ b,; then a; + a, ~
b, + b,.
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Proof: First suppose that a; ~ b, and a, ~ b,, so
that, for some j, k, r, s € I, we have, for i # j, k,
ay (i) = by(i)
and, for some x € V; N V,,
al(j) +x = bl(])s
ai(k) — x = by(k);
and, fori # r, s,
ay(i) = by(i),
and, for some ye ¥V, NV,
ay(r) + y = by(r),
ax(s) — y = by(s).

Case 1. All j, k, r, s are distinct. Define an element
c€ V by

(i) = a(i),
c(jy=a(j) + x,
ck) = alk) — x,
for i # j, k, so that c~a. Now c(j) = b(j) and

c(k) = b(k), since j and k are distinct from r and s.
And

c(r) = ay(r) + ax(r) = by(r) + by(r) — y,
c(s) = a,(s) + ay(s) = by(s) + by(s) — Yy,

which means that ¢ ~ . Thus g ~ b.

Case 2. Three indices are distinct, and suppose
k = r. Define ¢, d € V by the following:
fori # j, k: c(i) = ali),
e(j) = a(j) + x,
c(k) = alk) — x;
for i # k, s: d(i) = b(i),
d(k) = b(k) — y,
d(s) = b(s) + y.
Then ¢ ~a and d ~ b. Now, fori # j, k, s, we have
c(i) = d(i); also,
() = a(j) + x = a1(j) + a.(j) + x
=b(j)+ b)) —y=4d(j)—y,
while
c(k) = ay(k) + ay(k) — x = by(k) + by(k)
dk) +y

I

and
c(s) = a,(s) + ax(s) = bi(5) + by(s) + y = d(s).

Thus c ~d and a ~ b.
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The case where both indices coincide is trivial. Now
suppose
= qy~ay~"""~d, =b
and

Qy = Qoo ~ Qg ~ """~ Uy = by;

by repeating, if necessary, we may assume thatn = m.
Then

a + a; = agy + dge ~ ayy + ay,

R Ry + Ay = by + by

Theorem 20: The set V|~ of equivalence classes is a
vector space under the operations inherited from V.

Proof: By the previous lemma, addition is well
defined. The relation Aa ~ Ab is an immediate con-
sequence of a &~ b, and the rest of the argument is
standard.

Notation: We write Y.; V; for V/~. For any
a € V, we write either Y ,.; a(i) or A for the equivalence
class containing a.

Now let xe V;, £ be the map i — §,;x and X the
cless of the map x.

Theorem 21: The map x — X is an isomorphism of
V;into >, V, preserving the intersections of distinct
V.

7

Proof: It is clear that this map preserves the
operations. Let X =0, ie., x &~ 0. By Lemma 4,
there exists a ¢ € V such that ¢(i) = J;;x, where all
c(i) = 0 except for

m
=iy, 0, ", ln and c(lk) = lekrcry
p—

with M of the form stated in the lemma. If there is a
row of M with one nonzero element only and if this
row corresponds to the index i, = j, then x = 0 and
we have finished; if i, # j, then ¢(i;) =0 and we
reduce m by 1. If no row has a single nonzero element,
then they all have exactly two such nonzero elements.
Consider a row corresponding to i, # j: If thenonzero
elements are in the columns r, s, then ¢, = +c,, and
we can replace ¢, in the other equations by +c,,
thereby reducing the number of equations while re-
taining the form of M. We are thus led to the case
m=1, ie., x~0; we then have x + y =0 and
—y = 0 for some y; hence x = 0. This means that the
map x — X is indeed an isomorphism. Finally, let
x A y and assume that x, y are not in the same V;,
since this case is already covered. Then the same
argument as above applies since the column of the
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c(i,) contains all zeros except x and y. Thus we check
the case x ~ y. This means that, forsomez eV, N V,,

X = 0;),
0 x + 2z =9,y,
OprX — 2 = Oy}

This gives immediately x = y.

Notation: We shall identify V; with its image under

the above map, or, equivalently, call this image V;.

2. Linear Functionals

Definition 11: A family of maps f;: V; — W (any set)
is “coherent” if f; | V, NV, = f, | V; N V,, for any
jykel

Lemma 6: There is a one-to-one correspondence
between coherent families (f;);c; of maps into W and
maps f: Uy Vi — W determined by f;, = f| V..

Theorem 22: There is a one-to-one correspondence
between coherent families of linear maps (f;);c; into
a vector space W and linear maps f:Y ., V,—> W
determined by f; = f| V,.

Proof: Clearly, if fis linear, so is each f;, and the
family (fi);c; is coherent. For the converse, suppose
a~b. Since we have a(i) = b(i) for i # j, k while

a(j)+ x =b(j) and a(k) — x = b(k),
xXeEV; NV,
we also have

Zlf,-(a(i)) = ; Jda@) + fa() + fula(k)
= Y fub()) + fAb(j) — x) + fulb(k) + x)

i#ik
= %fz(b(l)) = fix) + fi(x)
= 2, fub()),
iel
since x € ¥; N V, and the family of maps is coherent.
Thus we may define f(A) as > ;.; fi(a(i)) for any a € 4,
since by the use of a chain we see that the value
obtained is the same. Obviously, f is linear, and

f‘ Vi=fi'

Notation: We write Y, f; for the linear map
generated by the family (f;);.z.

3. Positive Linear Functionals
The scalars are now assumed to be the reals.
Suppose that each V; contains a convex cone C; with
vertex at the origin, and let C be the convex hull of the
union Uiz C; in Qs V.



2126

Lemma 7: The set C is a convex cone, and ¢ € C iff
€= D¢, with e, e C;.

Proof: The set C' = {J,cr¢; | c,€ C;} is a convex
cone containing all C;; furthermore, each element of
the form ., ¢; is in C, since it has the form

Z (1A )e;],

i€l
with 2, > 0and > 4, = 1. Thus C' = C.

Notation: We write 3 ,;.; C; for C.

Theorem 23: A functional > ,.; f; is positive relative
to > ;7 C; iff each f is positive relative to C,.
= Zf;(cz)5

(34)(39) =2

positivity of the f; implies that of > ..; f;. Conversely,
since

Proof: Since

vV, and C, <> C,,

ief

5= (35)

el

positivity of ., f; implies that of f;.

Lemma 8: Suppose that E € (,.; C,, and that each
C; is radial at E. Then Y ,.; C; is also radial at E.

Proof: Consider any A,ae A and let a(i) =0
except fori = i,,4, ,i,. Now E, asan element of
D1 Vi, is represented by any map e:i — §,,F (any j).
On each segment from E to a(i), there exists by
hypothesis an element b(i) € V; which is in the cone
C,. Let B be the class of the map

b:i— b(i),
b:i—0,
Since b(i)e C;, we have Be>,;C;. Let D=
tE 4+ (1 — t)B so that D is represented by the map
d:i —tE + (1 — 0)b(i),
dii— (1 — t)b(i),
d:i—0,
Since all d(i) € C,, we have D € 3, C;, which means
that the cone is radial at the point E.
Without any restriction on the cones C;, there may
not exist coherent families of positive functionals on

the family (V,),.;. It is clear that, in case > ,.; C, has
a radial point, positive nonzero functionals exist iff

2C#2V

ie] ief

(Theorem 3.2 of Ref. 6).

for i=1i,0, " ,1,,

for all other 1.

for i=1i,

for i=i,, i, "I,

for all other /.
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Theorem 24: Suppose that each C, is radial at
EeNV,

€]
and that, for each x € V, x ¢ C,, there exists a positive
functional f on V, such that f{x) < 0. Then the
positive (relative to C;) functionals on V; extend to
positive (relative to Y ,.; C,) functionals on Y., V; iff

(ZIC) AV, =c,.

Proof: Suppose that this condition is satisfied, i.e.,
that the order induced on V; as a subspace of X ,.; V;
is the original order. Then any functional on V;,
positive on C;, is also positive relative to > ,.; C;.
Since E € ¥, and the cone 3 ,; C; is radial at E, any
such functional extends to a functional on Y, V,,
positive relative to Y ,.; C; (Theorem 3.3 of Ref. 6).
Conversely, suppose that all such functionals extend,
and take Y,.; c(i) in ¥; but not in C;; there exists a
functional f on ¥; which is positive and such that

JCier ¢(D)) < 0. But fextends to a positive functional
on >, V, relative to > ,.; C;; hence

J(ZWOZQ
iel
which is a contradiction.

It is not hard to find cases where the condition in the
above theorem does not hold.

APPENDIX B: EXTENSION OF POSITIVE
FUNCTIONALS
Let C be a cone in a real vector space V" and < the
corresponding partial ordering. Assume that ¥ has a
unit / € C, i.e., that for each 4 € V, there is a constant
k > Osuch that —kI < 4 < k.

Lemma 9 (Segal): Suppose that W is a subspace of
V' containing the unit / and that f is a positive
functional on W. Then, for any x ¢ W, there exists a
positive extension g of f to the subspace spanned by
W and x.

Proof: Let a=inf{f(y)|x<yeW} and b=
sup {f(z) | x > z € W}. As I is a unit and belongs to W,
both a and b are finite; also, since we havez < x < y,
we have b < a. Now choose any ¢ between a and b,
and set g(w + Ax) = f{w) + Ac; g is obviously linear
on W 4+ {x}. Suppose that we have w + Ax > 0.
In case 4> 0, we have x > —(1/4)w, and hence
(=) <b<c In case A <0, we have x <
—(1/2)w and hence f(—(1/A)w) > a > c, so that in
both cases, we have f(w) + A¢c > 0, or glw + ix) > 0.
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APPENDIX C: EXISTENCE OF FUNCTIONS

The following lemma is needed for the proof of
Theorem 25.

Lemma 10: Given an interval U, a continuous
function £, and a continuous function /4, with compact
support K such that 0 < A < f1U, let

k(y) = sup th(x) | fx) = y}.

Then, if a is on the boundary of U, we have lim k(y) =
0. y=a

Proof: Otherwise there exists a sequence y, con-
verging to g and a ¢ > 0 such that k(y,) > ¢ for all
n. Take x,, € f~1y, , with A(x,) > 0 and a subsequence
X, converging to some x, (which is possible since
K is compact). Then #i(x,q) tends to A(x,), and
flx,a) tends to f(x,); this implies that a = f(x,) and
h(xy) > 6. But a ¢ U, hence x,¢f~1U (because f is
single-valued), and thus A(x,) = 0, which is a contra-
diction.

Theorem 25: Under the hypotheses of Lemma 10,
there exists a continuous g such that 0 < g = U and

gofzh

Proof: Take a sequence e, converging to zero
through positive values which are less than unity.
There exists a 4§, such that, if [y — a| < d;, then
k(y) < €. Join the point (a + 46,, ¢) to the point
(a + 6., 1) by a segment s,(y). Then, in the interval
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(@ + }0,, a + 9;), we have 5,(y) > k(). There exists
now a d, < 44, such that, if |y — a| < d,, then k(y) <
€y. Join the point (a + 19,, €,) to the point (a + 6,
€,), and the point (@ 4 d, ;) to the point (@ + 16,, €,)
to obtain s,(y), which is thus > k(y). Proceed in this
way to obtain a numerical sequence 4, , converging to
zero, and a sequence of polygonal lines s,(y) over the
intervals (a + }9,,, a + 46,,_,), such that 5,(y) > k()
in each interval. Join the lines together to obtain g(y)
in a neighborhood of a. Clearly, g is continuous,
gla) =0, gla+ 6 =1, and g(y) > k(y). Define g
similarly at the other end of U, and set it equal to one
in between and equal to zero outside U.

Theorem 26: Let K be a compact set on the real
axis containing both positive and negative points.
Then there exists a function f, continuous on K, and
positive numbers ¢ and d, such that —1 < f(x) < 0 for
xeK, —1ef(K),and f(x) + 1 — d > cx for xe K.

Proof (after Sherman®): Let x, and x, be the infimum
and the supremum of K, so that x, <0 < x,.
Let Fy = (—o0, ;] N Kand F, = [§x;, + o) N K;
these are closed and disjoint sets. Consider a function
/. continuous on K, and such that f| F, = 0, f| F; =
—1l and —1 < f(x) < 0 for x € K (Tietze’s theorem),
which satisfies the first two requirements. Let d =
min (}, —x,/4x;), and take xe€F,. Then f(x) +
I —d=1—d> x/2x, for all such x. For x ¢ F,,
we have f(x) + 1 —d > —1 4+ 1 —d > x,/4x,; but
x€K, x¢F, implies x < Ix,, so that we can take
c=1/2x, > 0.
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When the above article was published, the by-line was incomplete. It should read as above.
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